Illustrating Examples From Enumerative Geometry
How Many Lines in $\mathbb P^3$ Meet Four General Lines in $\mathbb P^3$?
julia> G = abstract_grassmannian(2, 4)
AbstractVariety of dim 4
julia> schubert_classes(G)
5-element Vector{Vector{MPolyQuoRingElem{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}}}:
[1]
[-c[1]]
[c[1]^2 - c[2], c[2]]
[-c[1]*c[2]]
[c[2]^2]
julia> s1 = schubert_class(G, 1)
-c[1]
julia> integral(s1^4)
2
How many lines in $\mathbb P^3$ are secant to two General Twisted Cubic Curves in $\mathbb P^3$?
julia> G = abstract_grassmannian(2, 4)
AbstractVariety of dim 4
julia> s2 = schubert_class(G, 2)
c[1]^2 - c[2]
julia> s11 = schubert_class(G, [1, 1])
c[2]
julia> integral((s2+3*s11)^2)
10
How Many Lines in $\mathbb P^4$ Meet six General Planes in $\mathbb P^4$?
julia> G = abstract_grassmannian(2, 5)
AbstractVariety of dim 6
julia> s1 = schubert_class(G, 1)
-c[1]
julia> integral(s1^6)
5
How Many Planes in $\mathbb P^4$ Meet six General Lines in $\mathbb P^4$?
julia> G = abstract_grassmannian(3, 5)
AbstractVariety of dim 6
julia> s1 = schubert_class(G, 1)
-c[1]
julia> integral(s1^6)
5
Steiner's Problem: How Many Conics are Tangent to 5 General Conics in $\mathbb P^2$?
julia> P2 = abstract_projective_space(2)
AbstractVariety of dim 2
julia> P5 = abstract_projective_space(5, symbol = "H")
AbstractVariety of dim 5
julia> h = gens(P2)[1]
h
julia> H = gens(P5)[1]
H
julia> i = map(P2, P5, [2*h])
AbstractVarietyMap from AbstractVariety of dim 2 to AbstractVariety of dim 5
julia> Bl, E, j = blow_up(i)
(AbstractVariety of dim 5, AbstractVariety of dim 4, AbstractVarietyMap from AbstractVariety of dim 4 to AbstractVariety of dim 5)
julia> e, HBl = gens(chow_ring(Bl))
2-element Vector{MPolyQuoRingElem{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}}:
e
H
julia> integral((6*HBl-2*e)^5)
3264
How Many Conics Meet Eight General Lines in $\mathbb P^3$?
julia> G = abstract_grassmannian(3, 4)
AbstractVariety of dim 3
julia> USBd = dual(tautological_bundles(G)[1])
AbstractBundle of rank 3 on AbstractVariety of dim 3
julia> F = symmetric_power(USBd, 2)
AbstractBundle of rank 6 on AbstractVariety of dim 3
julia> PF = projective_bundle(F) # the parameter space of conics in P3
AbstractVariety of dim 8
julia> UQB = tautological_bundles(G)[2]
AbstractBundle of rank 1 on AbstractVariety of dim 3
julia> p = pullback(structure_map(PF), chern_class(UQB, 1))
-c[1]
julia> Z = dual(tautological_bundles(PF)[1])
AbstractBundle of rank 1 on AbstractVariety of dim 8
julia> z = chern_class(Z, 1)
z
julia> integral((2*p + z)^8)
92
How Many Conics lie on the General Cubic Surface and meet a General Line in $\mathbb P^3$?
julia> G = abstract_grassmannian(3, 4)
AbstractVariety of dim 3
julia> USBd = dual(tautological_bundles(G)[1])
AbstractBundle of rank 3 on AbstractVariety of dim 3
julia> F = symmetric_power(USBd, 2)
AbstractBundle of rank 6 on AbstractVariety of dim 3
julia> PF = projective_bundle(F)
AbstractVariety of dim 8
julia> UQB = tautological_bundles(G)[2]
AbstractBundle of rank 1 on AbstractVariety of dim 3
julia> p = pullback(structure_map(PF), chern_class(UQB, 1))
-c[1]
julia> Z = dual(tautological_bundles(PF)[1])
AbstractBundle of rank 1 on AbstractVariety of dim 8
julia> z = chern_class(Z, 1)
z
julia> E = symmetric_power(USBd , 3)-USBd*OO(PF, -1)
AbstractBundle of rank 7 on AbstractVariety of dim 8
julia> C = top_chern_class(E)
27*z^5*c[2] - 135*z^4*c[3]
julia> integral(C*(2*p + z))
81
How Many Conics lie on the General Quintic Hypersurface in $\mathbb P^4$?
julia> G = abstract_grassmannian(3, 5)
AbstractVariety of dim 6
julia> USBd = dual(tautological_bundles(G)[1])
AbstractBundle of rank 3 on AbstractVariety of dim 6
julia> F = symmetric_power(USBd, 2)
AbstractBundle of rank 6 on AbstractVariety of dim 6
julia> PF = projective_bundle(F) # the parameter space of conics in P4
AbstractVariety of dim 11
julia> A = symmetric_power(USBd, 5) - symmetric_power(USBd, 3)*OO(PF, -1)
AbstractBundle of rank 11 on AbstractVariety of dim 11
julia> integral(top_chern_class(A))
609250
How Many Elliptic Cubics lie on the General Sextic Hypersurface in $\mathbb P^5$?
See [KP07].
julia> G = abstract_grassmannian(3, 6);
julia> USBd = dual(tautological_bundles(G)[1])
AbstractBundle of rank 3 on AbstractVariety of dim 9
julia> F = symmetric_power(USBd, 3)
AbstractBundle of rank 10 on AbstractVariety of dim 9
julia> PF = projective_bundle(F)
AbstractVariety of dim 18
julia> E = symmetric_power(USBd, 6)-F*OO(PF, -1)
AbstractBundle of rank 18 on AbstractVariety of dim 18
julia> integral(top_chern_class(E))
2734099200