Return the graph of f:X→Y as a subscheme of X×Y as well as the two projections to X and Y.
Examples
julia> Y = affine_space(QQ,3)
Affine space of dimension 3
over rational field
with coordinates [x1, x2, x3]
julia> R = OO(Y)
Multivariate polynomial ring in 3 variables x1, x2, x3
over rational field
julia> (x1,x2,x3) = gens(R)
3-element Vector{QQMPolyRingElem}:
x1
x2
x3
julia> X = subscheme(Y, x1)
Spectrum
of quotient
of multivariate polynomial ring in 3 variables x1, x2, x3
over rational field
by ideal (x1)
julia> f = inclusion_morphism(X, Y)
Affine scheme morphism
from [x1, x2, x3] scheme(x1)
to [x1, x2, x3] affine 3-space over QQ
given by the pullback function
x1 -> x1
x2 -> x2
x3 -> x3
julia> graph(f)
(scheme(x1, -x1, x2 - x2, x3 - x3), Hom: scheme(x1, -x1, x2 - x2, x3 - x3) -> scheme(x1), Hom: scheme(x1, -x1, x2 - x2, x3 - x3) -> affine 3-space over QQ with coordinates [x1, x2, x3])