Finitely presented modules
AbstractAlgebra allows the construction of finitely presented modules (i.e. with finitely many generators and relations), starting from free modules.
The generic code provided by AbstractAlgebra will only work for modules over euclidean domains.
Free modules can be built over both commutative and noncommutative rings. Other types of module are restricted to fields and euclidean rings.
Abstract types
AbstractAlgebra provides two abstract types for finitely presented modules and their elements:
FPModule{T}
is the abstract type for finitely presented module parent
types
FPModuleElem{T}
is the abstract type for finitely presented module
element types
Note that the abstract types are parameterised. The type T
should usually be the type of elements of the ring the module is over.
Module functions
All finitely presented modules over a Euclidean domain implement the following functions.
Basic functions
zero(M::FPModule)
iszero(m::FPModuleElem{T}) where T <: RingElement
Return true
if the given module element is zero.
number_of_generators(M::FPModule{T}) where T <: RingElement
Return the number of generators of the module $M$ in its current representation.
gen(M::FPModule{T}, i::Int) where T <: RingElement
Return the $i$-th generator (indexed from $1$) of the module $M$.
gens(M::FPModule{T}) where T <: RingElement
Return a Julia array of the generators of the module $M$.
rels(M::FPModule{T}) where T <: RingElement
Return a Julia vector of all the relations between the generators of M
. Each relation is given as an AbstractAlgebra row matrix.
Examples
julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals
julia> n = number_of_generators(M)
2
julia> G = gens(M)
2-element Vector{AbstractAlgebra.Generic.FreeModuleElem{Rational{BigInt}}}:
(1//1, 0//1)
(0//1, 1//1)
julia> R = rels(M)
AbstractAlgebra.Generic.MatSpaceElem{Rational{BigInt}}[]
julia> g1 = gen(M, 1)
(1//1, 0//1)
julia> !iszero(g1)
true
julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals
julia> z = zero(M)
(0//1, 0//1)
julia> iszero(z)
true
Element constructors
We can construct elements of a module $M$ by specifying linear combinations of the generators of $M$. This is done by passing a vector of ring elements.
(M::FPModule{T})(v::Vector{T}) where T <: RingElement
Construct the element of the module $M$ corresponding to $\sum_i g[i]v[i]$ where $g[i]$ are the generators of the module $M$. The resulting element will lie in the module $M$.
Coercions
Given a module $M$ and an element $n$ of a module $N$, it is possible to coerce $n$ into $M$ using the notation $M(n)$ in certain circumstances.
In particular the element $n$ will be automatically coerced along any canonical injection of a submodule map and along any canonical projection of a quotient map. There must be a path from $N$ to $M$ along such maps.
Examples
F = free_module(ZZ, 3)
S1, f = sub(F, [rand(F, -10:10)])
S, g = sub(F, [rand(F, -10:10)])
Q, h = quo(F, S)
m = rand(S1, -10:10)
n = Q(m)
Arithmetic operators
Elements of a module can be added, subtracted or multiplied by an element of the ring the module is defined over and compared for equality.
In the case of a noncommutative ring, both left and right scalar multiplication are defined.
Basic manipulation
zero(M::FPModule)
Examples
julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals
julia> z = zero(M)
(0//1, 0//1)
Element indexing
getindex
— Methodgetindex(a::Fac, b) -> Int
If $b$ is a factor of $a$, the corresponding exponent is returned. Otherwise an error is thrown.
getindex(A::SMat, i::Int, j::Int)
Given a sparse matrix $A = (a_{ij})_{i, j}$, return the entry $a_{ij}$.
getindex(A::SMat, i::Int) -> SRow
Given a sparse matrix $A$ and an index $i$, return the $i$-th row of $A$.
Examples
julia> F = free_module(ZZ, 3)
Free module of rank 3 over integers
julia> m = F(BigInt[2, -5, 4])
(2, -5, 4)
julia> m[1]
2
Module comparison
==
— Method==(M::FPModule{T}, N::FPModule{T}) where T <: RingElement
Return true
if the modules are (constructed to be) the same module elementwise. This is not object equality and it is not isomorphism. In fact, each method of constructing modules (submodules, quotient modules, products, etc.) must extend this notion of equality to the modules they create.
Examples
julia> M = free_module(QQ, 2)
Vector space of dimension 2 over rationals
julia> M == M
true
Isomorphism
is_isomorphic
— Methodis_isomorphic(M::FPModule{T}, N::FPModule{T}) where T <: RingElement
Return true
if the modules $M$ and $N$ are isomorphic.
Note that this function relies on the Smith normal form over the base ring of the modules being able to be made unique. This is true for Euclidean domains for which divrem
has a fixed choice of quotient and remainder, but it will not in general be true for Euclidean rings that are not domains.
Examples
julia> M = free_module(ZZ, 3)
Free module of rank 3 over integers
julia> m1 = rand(M, -10:10)
(3, -1, 0)
julia> m2 = rand(M, -10:10)
(4, 4, -7)
julia> S, f = sub(M, [m1, m2])
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)
julia> I, g = image(f)
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)
julia> is_isomorphic(S, I)
true
Invariant Factor Decomposition
For modules over a euclidean domain one can take the invariant factor decomposition to determine the structure of the module. The invariant factors are unique up to multiplication by a unit, and even unique if a canonical_unit
is available for the ring that canonicalises elements.
snf
— Methodsnf(m::FPModule{T}) where T <: RingElement
Return a pair M, f
consisting of the invariant factor decomposition $M$ of the module m
and a module homomorphism (isomorphisms) $f : M \to m$. The module M
is itself a module which can be manipulated as any other module in the system.
invariant_factors
— Methodinvariant_factors(m::FPModule{T}) where T <: RingElement
Return a vector of the invariant factors of the module $M$.
Examples
julia> M = free_module(ZZ, 3)
Free module of rank 3 over integers
julia> m1 = rand(M, -10:10)
(3, -1, 0)
julia> m2 = rand(M, -10:10)
(4, 4, -7)
julia> S, f = sub(M, [m1, m2])
(Submodule over integers with 2 generators and no relations, Hom: submodule over integers with 2 generators and no relations -> free module of rank 3 over integers)
julia> Q, g = quo(M, S)
(Quotient module over integers with 2 generators and relations:
[16 -21], Hom: free module of rank 3 over integers -> quotient module over integers with 2 generators and relations:
[16 -21])
julia> I, f = snf(Q)
(Invariant factor decomposed module over integers with invariant factors BigInt[0], Hom: invariant factor decomposed module over integers with invariant factors BigInt[0] -> quotient module over integers with 2 generators and relations:
[16 -21])
julia> invs = invariant_factors(Q)
1-element Vector{BigInt}:
0