Toric Line Bundles
Constructors
Generic constructors
toric_line_bundle
— Methodtoric_line_bundle(v::NormalToricVarietyType, picard_class::FinGenAbGroupElem)
Construct the line bundle on the abstract normal toric variety with given class in the Picard group of the toric variety in question.
Examples
julia> P2 = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(P2, picard_group(P2)([1]))
Toric line bundle on a normal toric variety
toric_line_bundle
— Methodtoric_line_bundle(v::NormalToricVarietyType, picard_class::Vector{T}) where {T <: IntegerUnion}
Construct the line bundle on the abstract normal toric variety v
with class c
in the Picard group of v
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
toric_line_bundle
— Methodtoric_line_bundle(v::NormalToricVarietyType, d::ToricDivisor)
Construct the toric variety associated to a (Cartier) torus-invariant divisor d
on the normal toric variety v
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, toric_divisor(v, [1, 2, 3]))
Toric line bundle on a normal toric variety
toric_line_bundle
— Methodtoric_line_bundle(d::ToricDivisor)
Construct the toric variety associated to a (Cartier) torus-invariant divisor d
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> d = toric_divisor(v, [1, 2, 3]);
julia> l = toric_line_bundle(d)
Toric line bundle on a normal toric variety
toric_line_bundle
— Methodtoric_line_bundle(v::NormalToricVarietyType, dc::ToricDivisorClass)
Construct the toric variety associated to a divisor class in the class group of a toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> d = toric_divisor(v, [1, 2, 3])
Torus-invariant, non-prime divisor on a normal toric variety
julia> dc = toric_divisor_class(d)
Divisor class on a normal toric variety
julia> l = toric_line_bundle(v, dc)
Toric line bundle on a normal toric variety
toric_line_bundle
— Methodtoric_line_bundle(dc::ToricDivisorClass)
Construct the toric variety associated to a divisor class in the class group of a toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> d = toric_divisor(v, [1, 2, 3])
Torus-invariant, non-prime divisor on a normal toric variety
julia> dc = toric_divisor_class(d)
Divisor class on a normal toric variety
julia> l = toric_line_bundle(dc)
Toric line bundle on a normal toric variety
Tensor products
Toric line bundles can be tensored via *
. The n
-th tensor power can be computed via ^n
. In particular, ^(-1)
computes the inverse of a line bundle. Alternatively, one can compute the inverse by invoking inv
.
Special line bundles
anticanonical_bundle
— Methodanticanonical_bundle(v::NormalToricVarietyType)
Construct the anticanonical bundle of a normal toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> anticanonical_bundle(v)
Toric line bundle on a normal toric variety
canonical_bundle
— Methodcanonical_bundle(v::NormalToricVarietyType)
Construct the canonical bundle of a normal toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> canonical_bundle(v)
Toric line bundle on a normal toric variety
structure_sheaf
— Methodstructure_sheaf(v::NormalToricVarietyType)
Construct the structure sheaf of a normal toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> structure_sheaf(v)
Toric line bundle on a normal toric variety
trivial_line_bundle
— Methodtrivial_line_bundle(v::NormalToricVarietyType)
Construct the trivial line bundle on a normal toric variety.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = trivial_line_bundle(v)
Toric line bundle on a normal toric variety
julia> is_trivial(l)
true
Properties
Equality of toric line bundles can be tested via ==
.
To check if a toric line bundle is trivial, one can invoke is_trivial
. Beyond this, we support the following properties of toric line bundles:
is_ample
— Methodis_ample(l::ToricLineBundle)
Return true
if the toric line bundle l
is ample and false
otherwise.
Examples
julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal toric variety
julia> is_ample(toric_line_bundle(F4, [1,0]))
false
is_basepoint_free
— Methodis_basepoint_free(l::ToricLineBundle)
Return true
if the toric line bundle l
is basepoint free and false
otherwise.
Examples
julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal toric variety
julia> is_basepoint_free(toric_line_bundle(F4, [1, 0]))
true
is_immaculate
— Methodis_immaculate(l::ToricLineBundle)
Return true
if all sheaf cohomologies of l
are trivial and false
otherwise.
Examples
julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal toric variety
julia> l = toric_line_bundle(F4, [1,0])
Toric line bundle on a normal toric variety
julia> is_immaculate(toric_line_bundle(F4, [1,0]))
false
julia> all_cohomologies(l)
3-element Vector{ZZRingElem}:
2
0
0
is_very_ample
— Methodis_very_ample(l::ToricLineBundle)
Return true
if the toric line bundle l
is very ample and false
otherwise.
Examples
julia> F4 = hirzebruch_surface(NormalToricVariety, 4)
Normal toric variety
julia> is_very_ample(toric_line_bundle(F4, [1,0]))
false
Attributes
degree
— Methoddegree(l::ToricLineBundle)
Return the degree of the toric line bundle l
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> degree(l)
2
picard_class
— Methodpicard_class(l::ToricLineBundle)
Return the class in the Picard group which defines the toric line bundle l
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> picard_class(l)
Abelian group element [2]
toric_divisor
— Methodtoric_divisor(l::ToricLineBundle)
Return a toric divisor corresponding to the toric line bundle l
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> toric_divisor(l)
Torus-invariant, cartier, non-prime divisor on a normal toric variety
julia> is_cartier(toric_divisor(l))
true
toric_divisor_class
— Methodtoric_divisor_class(l::ToricLineBundle)
Return a divisor class in the Class group corresponding to the toric line bundle l
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> toric_divisor(l)
Torus-invariant, cartier, non-prime divisor on a normal toric variety
julia> is_cartier(toric_divisor(l))
true
toric_variety
— Methodtoric_variety(l::ToricLineBundle)
Return the toric variety over which the toric line bundle l
is defined.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> toric_variety(l)
Normal toric variety without torusfactor
Methods
basis_of_global_sections_via_rational_functions
— Methodbasis_of_global_sections_via_rational_functions(l::ToricLineBundle)
Return a basis of the global sections of the toric line bundle l
in terms of rational functions.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> basis_of_global_sections_via_rational_functions(l)
6-element Vector{MPolyQuoRingElem{QQMPolyRingElem}}:
x1_^2
x2*x1_^2
x2^2*x1_^2
x1_
x2*x1_
1
basis_of_global_sections_via_homogeneous_component
— Methodbasis_of_global_sections_via_homogeneous_component(l::ToricLineBundle)
Return a basis of the global sections of the toric line bundle l
in terms of a homogeneous component of the Cox ring of toric_variety(l)
. For convenience, this method can also be called via basis_of_global_sections(l::ToricLineBundle)
.
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> basis_of_global_sections_via_homogeneous_component(l)
6-element Vector{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}:
x3^2
x2*x3
x2^2
x1*x3
x1*x2
x1^2
julia> basis_of_global_sections(l)
6-element Vector{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}:
x3^2
x2*x3
x2^2
x1*x3
x1*x2
x1^2
generic_section
— Methodgeneric_section(l::ToricLineBundle)
Return a generic section of the toric line bundle l
, that is return the sum of all elements basis_of_global_sections(l)
, each multiplied by a random integer.
The optional keyword argument range
can be used to set the range of the random integers, e.g., generic_section(l, range = -100:100)
Examples
julia> v = projective_space(NormalToricVariety, 2)
Normal toric variety
julia> l = toric_line_bundle(v, [ZZRingElem(2)])
Toric line bundle on a normal toric variety
julia> s = generic_section(l);
julia> parent(s) == cox_ring(toric_variety(l))
true