Miscellaneous functions
Utilities
is_orthogonally_stable
— Functionis_orthogonally_stable(chi::GAPGroupClassFunction; check::Bool = true)
Return nothing
if the indicator of some irreducible constituent of chi
is not known; this can happen only if chi
has characteristic 2.
Otherwise return true
if chi
is orthogonally stable, and false
otherwise.
A character is called orthogonally stable if
chi
is orthogonal, that is,chi
is real, and all its absolutely irreducible constituents of indicator-
have even multiplicity and- all its absolutely irreducible constituents of indicator
+
have even degree.
If we know that chi
is orthogonal then we can set check
to false
; in this case, some nothing
results can be avoided.
Examples
julia> t = character_table("A6");
julia> println(map(is_orthogonally_stable, t))
Bool[0, 0, 0, 1, 1, 0, 1]
julia> println(map(is_orthogonally_stable, mod(t, 3)))
Bool[0, 0, 0, 1, 0]
This function is part of the experimental code in Oscar. Please read here for more details.
show_with_ODs
— Functionshow_with_ODs(tbl::Oscar.GAPGroupCharacterTable)
Show tbl
with 2nd indicators, known ODs, and degrees of character fields. (See Base.show(io::IO, ::MIME"text/plain", tbl::Oscar.GAPGroupCharacterTable)
for ways to modify what is shown.)
Examples
julia> t = character_table("A5");
julia> Oscar.OrthogonalDiscriminants.show_with_ODs(t)
A5
2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1
1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a
d OD 2
X_1 1 + 1 1 1 1 1
X_2 2 + 3 -1 . A A*
X_3 2 + 3 -1 . A* A
X_4 1 5 + 4 . 1 -1 -1
X_5 1 + 5 1 -1 . .
A = z_5^3 + z_5^2 + 1
A* = -z_5^3 - z_5^2
show_OD_info
— Functionshow_OD_info(tbl::Oscar.GAPGroupCharacterTable)
show_OD_info(name::String)
Show an overview of known information about the ordinary and modular orthogonal discriminants for tbl
or for the character table with identifier name
.
Examples
julia> show_OD_info("A5")
A5: 2^2*3*5
------------
i|chi|K|disc| 2| 3| 5
-+---+-+----+--+--+--------
4| 4a|Q| 5|4a|4a|(def. 1)
| | | |O-|O-|
This function is part of the experimental code in Oscar. Please read here for more details.
Functions related to Specht modules
dimension_specht_module
— Functiondimension_specht_module(mu::Partition{T}) where T <: IntegerUnion -> ZZRingElem
Return the dimension of the Specht module for mu
.
Examples
julia> print([dimension_specht_module(p) for p in partitions(4)])
ZZRingElem[1, 3, 2, 3, 1]
This function is part of the experimental code in Oscar. Please read here for more details.
gram_determinant_specht_module
— Functiongram_determinant_specht_module(mu::Partition{T}) where T <: IntegerUnion
Return the determinant of the Gram matrix for the Specht module for mu
, in factorized collected form.
Examples
julia> print(gram_determinant_specht_module(partition([4, 3, 2, 1])))
Vector{ZZRingElem}[[3, 1152], [5, 768], [7, 384]]
This function is part of the experimental code in Oscar. Please read here for more details.