AbstractAlgebra's polynomial interface

This is the initial API of SLPs which hasn't been updated in a while and might not work as-is with the current state of the package.

Currently, SLPs have a polynomial interface (SLPoly).

Examples

julia> using AbstractAlgebra, StraightLinePrograms, BenchmarkTools;

julia> S = SLPolyRing(zz, [:x, :y]); x, y = gens(S)
2-element Vector{SLPoly{Int64,SLPolyRing{Int64,AbstractAlgebra.Integers{Int64}}}}:
 x
 y

julia> p = 3 + 2x * y^2 # each line of the SLP is shown with current value
  #1 = * 2 x    ==>     (2x)
  #2 = ^ y 2    ==>     y^2
  #3 = * #1 #2  ==>     (2xy^2)
  #4 = + 3 #3   ==>     (3 + (2xy^2))

julia> p.cs # constants used in the program
2-element Vector{Int64}:
 3
 2

julia> p.lines # each line is a UInt64 encoding an opcode and 2 arguments
 Line(0x0500000028000001)
 Line(0x8780000020000002)
 Line(0x0500000030000004)
 Line(0x0300000010000005)

julia> SLP.evaluate(p, [2, 3])
39

julia> p2 = (p*(x*y))^6
#1 = *  2  x  ==>  (2x)
#2 = ^  y  2  ==>  y^2
#3 = * #1 #2  ==>  (2xy^2)
#4 = +  3 #3  ==>  (3 + (2xy^2))
#5 = *  x  y  ==>  (xy)
#6 = * #4 #5  ==>  ((3 + (2xy^2))xy)
#7 = ^ #6  6  ==>  ((3 + (2xy^2))xy)^6

julia> R, (x1, y1) = polynomial_ring(zz, [:x, :y]); R
Multivariate Polynomial Ring in x, y over Integers

julia> q = convert(R, p2)
64*x^12*y^18+576*x^11*y^16+2160*x^10*y^14+4320*x^9*y^12+4860*x^8*y^10+2916*x^7*y^8+729*x^6*y^6

julia> v = [3, 5]; @btime SLP.evaluate($q, $v)
  32.101 μs (634 allocations: 45.45 KiB)
-1458502820125772303

julia> @btime SLP.evaluate($p2, $v)
  270.341 ns (4 allocations: 352 bytes)
-1458502820125772303

julia> res = Int[]; @btime StraightLinePrograms.evaluate!($res, $p2, $v)
  171.013 ns (0 allocations: 0 bytes)
-1458502820125772303

julia> res # intermediate computations (first 2 elements are constants)
9-element Vector{Int64}:
                    3
                    2
                    6
                   25
                  150
                  153
                   15
                 2295
 -1458502820125772303

julia> f2 = StraightLinePrograms.compile!(p2) # compile to machine code
#3 (generic function with 1 method)

julia> @btime SLP.evaluate($p2, $v)
  31.153 ns (1 allocation: 16 bytes)
-1458502820125772303

julia> @btime $f2($v) # use a function barrier for last bit of efficiency
 7.980 ns (0 allocations: 0 bytes)
-1458502820125772303

julia> q
64*x^12*y^18+576*x^11*y^16+2160*x^10*y^14+4320*x^9*y^12+4860*x^8*y^10+2916*x^7*y^8+729*x^6*y^6

julia> p3 = convert(S, q) # convert back q::Mpoly to an SLPoly
 #1 = ^    x   6  ==>  x^6
 #2 = ^    x   7  ==>  x^7
 #3 = ^    x   8  ==>  x^8
 #4 = ^    x   9  ==>  x^9
 #5 = ^    x  10  ==>  x^10
 #6 = ^    x  11  ==>  x^11
 #7 = ^    x  12  ==>  x^12
 #8 = ^    y   6  ==>  y^6
 #9 = ^    y   8  ==>  y^8
#10 = ^    y  10  ==>  y^10
#11 = ^    y  12  ==>  y^12
#12 = ^    y  14  ==>  y^14
#13 = ^    y  16  ==>  y^16
#14 = ^    y  18  ==>  y^18
#15 = *   64  #7  ==>  (64x^12)
#16 = *  #15 #14  ==>  (64x^12y^18)
#17 = *  576  #6  ==>  (576x^11)
#18 = *  #17 #13  ==>  (576x^11y^16)
#19 = +  #16 #18  ==>  ((64x^12y^18) + (576x^11y^16))
#20 = * 2160  #5  ==>  (2160x^10)
#21 = *  #20 #12  ==>  (2160x^10y^14)
#22 = +  #19 #21  ==>  ((64x^12y^18) + (576x^11y^16) + (2160x^10y^14))
#23 = * 4320  #4  ==>  (4320x^9)
#24 = *  #23 #11  ==>  (4320x^9y^12)
#25 = +  #22 #24  ==>  ((64x^12y^18) + (576x^11y^16) + (2160x^10y^14) + (4320x^9y^12))
#26 = * 4860  #3  ==>  (4860x^8)
#27 = *  #26 #10  ==>  (4860x^8y^10)
#28 = +  #25 #27  ==>  ((64x^12y^18) + (576x^11y^16) + (2160x^10y^14) + (4320x^9y^12) + (4860x^8y^10))
#29 = * 2916  #2  ==>  (2916x^7)
#30 = *  #29  #9  ==>  (2916x^7y^8)
#31 = +  #28 #30  ==>  ((64x^12y^18) + (576x^11y^16) + (2160x^10y^14) + (4320x^9y^12) + (4860x^8y^10) + (2916x^7y^8))
#32 = *  729  #1  ==>  (729x^6)
#33 = *  #32  #8  ==>  (729x^6y^6)
#34 = +  #31 #33  ==>  ((64x^12y^18) + (576x^11y^16) + (2160x^10y^14) + (4320x^9y^12) + (4860x^8y^10) + (2916x^7y^8) + (729x^6y^6))

julia> @btime SLP.evaluate($p3, $v)
  699.465 ns (5 allocations: 1008 bytes)
-1458502820125772303

julia> @time f3 = StraightLinePrograms.compile!(p3);
  0.002830 seconds (1.40 k allocations: 90.930 KiB)

julia> @btime $f3($v)
 80.229 ns (0 allocations: 0 bytes)
-1458502820125772303

julia> p4 = convert(S, q, limit_exp=true); # use different encoding

julia> @btime SLP.evaluate($p4, $v)
  766.864 ns (5 allocations: 1008 bytes)
-1458502820125772303

julia> @time f4 = StraightLinePrograms.compile!(p4);
  0.002731 seconds (1.74 k allocations: 108.676 KiB)

julia> @btime $f4($v)
  11.781 ns (0 allocations: 0 bytes)
-1458502820125772303