Oscar.jl logo
Oscar.jl
  • Welcome to Oscar
    • Architecture
    • Notes for users of other computer algebra systems
    • Frequently Asked Questions
    • Serialization
    • Introduction
    • Basics
    • Subgroups
    • Quotients
    • Products of groups
    • Permutation groups
    • Finitely presented groups
    • Polycyclic groups
    • Matrix groups
    • Group Actions
    • Group homomorphisms
    • Groups of automorphisms
    • Group libraries
    • Abelian Groups
    • Group characters
    • Introduction
    • Ring functionality
    • Integers
      • Univariate polynomial functionality
      • Sparse distributed multivariate polynomials
      • Power series
      • Generic Puiseux series
      • Power series and Laurent series
      • Puiseux series
    • Introduction
    • Field functionality
    • Rationals
    • Factored Elements
    • Class Field Theory
    • Generic fraction fields
      • Padics
      • Qadics
    • Finite fields
    • Introduction
    • Sparse linear algebra
    • Matrix functionality
    • Generic matrix algebras
      • Finitely presented modules
      • Free Modules and Vector Spaces
      • Submodules
      • Quotient modules
      • Direct Sums
      • Module Homomorphisms
      • Introduction
      • Spaces
      • Lattices
    • Introduction
      • Introduction
      • Number field operations
      • Element operations
      • Internals
      • Introduction
      • Orders
      • Elements
      • Ideals
      • Fractional ideals
    • Abelian closure of the rationals
    • Galois Theory
    • Introduction
      • Introduction
      • Constructions
      • Polyhedron and polymake's Polytope
      • Auxiliary functions
      • Saving and loading
      • Visualization
    • Cones
    • Polyhedral Fans
    • Polyhedral Complexes
    • Linear Programs
    • Subdivisions of Points
    • Introduction
    • Creating Multivariate Rings
    • Ideals in Multivariate Rings
      • Introduction
      • Free Modules
      • Subquotient Modules
      • Operations on Modules
    • Affine Algebras
    • Binomial Primary Decomposition
    • Localization
    • Localizations of modules over computable rings
    • Introduction
    • Invariants of Finite Groups
    • Invariants of Linearly Reductive Groups
    • Introduction
      • Rational Parametrizations of Rational Plane Curves
      • Introduction
      • Normal Toric Varieties
      • Cyclic Quotient Singularities
      • Toric Divisors
      • Toric Divisor Classes
      • Toric Line Bundles
      • Line bundle cohomology with cohomCalg
      • Cohomology Classes
      • Algebraic Cycles
        • Special attributes of toric varieties
      • General schemes
      • Introduction
      • Curves
    • Introduction
      • Introduction
      • Creating PBW-Algebras
      • Quotients of PBW-Algebras
    • Free Associative Algebras
    • Graphs
    • Matroids
    • Simplicial Complexes
    • Introduction
    • GAP's SLPs
    • AbstractAlgebra's polynomial interface
  • References
  • Index
    • Introduction for new developers
    • Developer Style Guide
    • Documenting OSCAR code
    • Serialization
      • AbstractCollection
      • SubObjectIterator
Version
  • Algebraic Geometry
  • Toric Varieties
  • Algebraic Cycles
  • Algebraic Cycles
Edit on GitHub
  • Algebraic Cycles
    • Special attributes of toric varieties

Algebraic Cycles

Special attributes of toric varieties

chow_ring — Method
chow_ring(v::AbstractNormalToricVariety)

Return the Chow ring of the simplicial and complete toric variety v.

Examples

julia> p2 = projective_space(NormalToricVariety, 2);

julia> ngens(chow_ring(p2))
3
source
« Cohomology ClassesGeneral schemes »

Powered by Documenter.jl and the Julia Programming Language.

Settings


This document was generated with Documenter.jl version 0.27.22 on Thursday 25 August 2022. Using Julia version 1.6.7.