Group libraries
Transitive permutation groups of small degree
TODO: explain about the scope of this.
TODO: give proper attribution to the transgrp package (in particular, cite it)
The arrangement and the names of the groups of degree up to 15 is the same as given in John H. Conway, Alexander Hulpke, John McKay (1998). With the exception of the symmetric and alternating group (which are represented as symmetric_group
and alternating_group
) the generators for these groups also conform to this paper with the only difference that 0 (which is not permitted in GAP for permutations to act on) is always replaced by the degree.
The arrangement for all degrees is intended to be equal to the arrangement within the systems GAP and Magma, thus it should be safe to refer to particular (classes of) groups by their index numbers.
all_transitive_groups
— Functionall_transitive_groups(L...)
Return the list of all transitive groups (up to permutation isomorphism) satisfying the conditions described by the arguments. These conditions may be of one of the following forms:
func => intval
selects groups for which the functionfunc
returnsintval
func => list
selects groups for which the functionfunc
returns any element insidelist
func
selects groups for which the functionfunc
returnstrue
!func
selects groups for which the functionfunc
returnsfalse
The following functions are currently supported as values for func
:
degree
is_abelian
is_almostsimple
is_cyclic
is_nilpotent
is_perfect
is_primitive
is_quasisimple
is_simple
is_sporadic_simple
is_solvable
is_supersolvable
is_transitive
number_conjugacy_classes
number_moved_points
order
transitivity
The type of the returned groups is PermGroup
.
Examples
julia> all_transitive_groups(degree => 3:5, is_abelian)
4-element Vector{PermGroup}:
A3
C(4) = 4
E(4) = 2[x]2
C(5) = 5
returns the list of all abelian transitive groups acting on 3, 4 or 5 points.
has_number_transitive_groups
— Functionhas_number_transitive_groups(deg::Int)
Return whether the number transitive groups groups of degree deg
are available for use via number_transitive_groups
.
Examples
julia> has_number_transitive_groups(30)
true
julia> has_number_transitive_groups(64)
false
has_transitive_group_identification
— Functionhas_transitive_group_identification(deg::Int)
Return whether identification of transitive groups groups of degree deg
is available via transitive_group_identification
.
Examples
julia> has_transitive_group_identification(30)
true
julia> has_transitive_group_identification(64)
false
has_transitive_groups
— Functionhas_transitive_groups(deg::Int)
Return whether the transitive groups groups of degree deg
are available for use. This function should be used to test for the scope of the library available.
Examples
julia> has_transitive_groups(30)
true
julia> has_transitive_groups(64)
false
number_transitive_groups
— Functionnumber_transitive_groups(deg::Int)
Return the number of transitive groups of degree deg
, up to permutation isomorphism.
Examples
julia> number_transitive_groups(30)
5712
julia> number_transitive_groups(64)
ERROR: ArgumentError: the number of transitive groups of degree 64 is not available
transitive_group
— Functiontransitive_group(deg::Int, i::Int)
Return the i
-th group in the catalogue of transitive groups over the set {1, ..., deg}
in GAP's Transitive Groups Library. The output is a group of type PermGroup
.
Examples
julia> transitive_group(5,4)
A5
julia> transitive_group(5,6)
ERROR: ArgumentError: there are only 5 transitive groups of degree 5, not 6
transitive_group_identification
— Functiontransitive_group_identification(G::PermGroup)
Return a pair (d,n)
such that G
is permutation isomorphic with transitive_group(d,n)
, where G
acts transitively on d
points.
If G
is not transitive on its moved points, or if the transitive groups of degree d
are not available, an exception is thrown.
Examples
julia> G = symmetric_group(7); m = transitive_group_identification(G)
(7, 7)
julia> order(transitive_group(m...)) == order(G)
true
julia> S = sub(G, [perm([1, 3, 4, 5, 2])])[1]
Group([ (2,3,4,5) ])
julia> is_transitive(S)
false
julia> is_transitive(S, moved_points(S))
true
julia> m = transitive_group_identification(S)
(4, 1)
julia> order(transitive_group(m...)) == order(S)
true
julia> transitive_group_identification(symmetric_group(64))
ERROR: ArgumentError: identification of transitive groups of degree 64 are not available
julia> S = sub(G, [perm([1,3,4,5,2,7,6])])[1];
julia> transitive_group_identification(S)
ERROR: ArgumentError: group is not transitive on its moved points
Primitive permutation groups of small degree
TODO: explain about the scope of this.
TODO: give proper attribution to the primitive groups library (in particular, cite it)
all_primitive_groups
— Functionall_primitive_groups(L...)
Return the list of all primitive permutation groups (up to permutation isomorphism) satisfying the conditions described by the arguments. These conditions may be of one of the following forms:
func => intval
selects groups for which the functionfunc
returnsintval
func => list
selects groups for which the functionfunc
returns any element insidelist
func
selects groups for which the functionfunc
returnstrue
!func
selects groups for which the functionfunc
returnsfalse
The following functions are currently supported as values for func
:
degree
is_abelian
is_almostsimple
is_cyclic
is_nilpotent
is_perfect
is_primitive
is_quasisimple
is_simple
is_sporadic_simple
is_solvable
is_supersolvable
is_transitive
number_conjugacy_classes
number_moved_points
order
transitivity
The type of the returned groups is PermGroup
.
Examples
julia> all_primitive_groups(degree => 3:5, is_abelian)
2-element Vector{PermGroup}:
A(3)
C(5)
returns the list of all abelian primitive permutation groups acting on 3, 4 or 5 points.
has_number_primitive_groups
— Functionhas_number_primitive_groups(deg::Int)
Return true
if the number of primitive permutation groups of degree deg
is available via number_primitive_groups
, otherwise false
.
Currently the number of primitive permutation groups is available up to degree 4095.
Examples
julia> has_number_primitive_groups(50)
true
julia> has_number_primitive_groups(5000)
false
has_primitive_group_identification
— Functionhas_primitive_group_identification(deg::Int)
Return true
if identification is supported for the primitive permutation groups of degree deg
via primitive_group_identification
, otherwise false
.
Currently identification is available for all primitive permutation groups up to degree 4095.
Examples
julia> has_primitive_group_identification(50)
true
julia> has_primitive_group_identification(5000)
false
has_primitive_groups
— Functionhas_primitive_groups(deg::Int)
Return true
if the primitive permutation groups of degree deg
are available via primitive_group
and all_primitive_groups
, otherwise false
.
Currently all primitive permutation groups up to degree 4095 are available.
Examples
julia> has_primitive_groups(50)
true
julia> has_primitive_groups(5000)
false
number_primitive_groups
— Functionnumber_primitive_groups(deg::Int)
Return the number of primitive permutation groups of degree deg
, up to permutation isomorphism.
Examples
julia> number_primitive_groups(10)
9
julia> number_primitive_groups(4096)
ERROR: ArgumentError: the number of primitive permutation groups of degree 4096 is not available
primitive_group
— Functionprimitive_group(deg::Int, i::Int)
Return the i
-th group in the catalogue of primitive permutation groups over the set {1, ..., deg}
in GAP's library of primitive permutation groups. The output is a group of type PermGroup
.
Examples
julia> primitive_group(10,1)
A(5)
julia> primitive_group(10,10)
ERROR: ArgumentError: there are only 9 primitive permutation groups of degree 10, not 10
primitive_group_identification
— Functionprimitive_group_identification(G::PermGroup)
Return a pair (d,n)
such that G
is permutation isomorphic with primitive_group(d,n)
, where G
acts primitively on d
points.
If G
is not primitive on its moved points, or if the primitive permutation groups of degree d
are not available, an exception is thrown.
Examples
julia> G = symmetric_group(7); m = primitive_group_identification(G)
(7, 7)
julia> order(primitive_group(m...)) == order(G)
true
julia> S = stabilizer(G, 1)[1]
Group([ (2,7,6,5,4,3), (6,7) ])
julia> is_primitive(S)
false
julia> is_primitive(S, moved_points(S))
true
julia> m = primitive_group_identification(S)
(6, 4)
julia> order(primitive_group(m...)) == order(S)
true
julia> primitive_group_identification(symmetric_group(4096))
ERROR: ArgumentError: identification of primitive permutation groups of degree 4096 is not available
julia> S = sub(G, [perm([1,3,4,5,2,7,6])])[1];
julia> primitive_group_identification(S)
ERROR: ArgumentError: group is not primitive on its moved points
Perfect groups of small order
The functions in this section are wrappers for the GAP library of finite perfect groups which provides, up to isomorphism, a list of all perfect groups whose sizes are less than $2\cdot 10^6$. The groups of most orders up to $10^6$ have been enumerated by Derek Holt and Wilhelm Plesken, see Derek F. Holt, W. Plesken (1989). For orders $n = 86016$, 368640, or 737280 this work only counted the groups (but did not explicitly list them), the groups of orders $n = 61440$, 122880, 172032, 245760, 344064, 491520, 688128, or 983040 were omitted.
Several additional groups omitted from the book Derek F. Holt, W. Plesken (1989) have also been included. Two groups – one of order 450000 with a factor group of type $A_6$ and the one of order 962280 – were found by Jack Schmidt in
- Two groups of order 243000 and one each of orders 729000, 871200, 878460
were found in 2020 by Alexander Hulpke.
The perfect groups of size less than $2\cdot 10^6$ which had not been classified in the work of Holt and Plesken have been enumerated by Alexander Hulpke. They are stored directly and provide less construction information in their names.
As all groups are stored by presentations, a permutation representation is obtained by coset enumeration. Note that some of the library groups do not have a faithful permutation representation of small degree. Computations in these groups may be rather time consuming.
has_number_perfect_groups
— Functionhas_number_perfect_groups(n::Int)
Return true
if the number of perfect groups of order n
are available via number_perfect_groups
, otherwise false
.
Currently the number of perfect groups is available up to order $2 \cdot 10^6$.
Examples
julia> has_number_perfect_groups(7200)
true
julia> has_number_perfect_groups(2*10^6+1)
false
has_perfect_group_identification
— Functionhas_perfect_group_identification(n::Int)
Return true
if identification is supported for the perfect groups of order n
via perfect_group_identification
, otherwise false
.
Currently identification is available for all perfect groups up to order $2 \cdot 10^6$.
Examples
julia> has_perfect_group_identification(7200)
true
julia> has_perfect_group_identification(2*10^6+1)
false
has_perfect_groups
— Functionhas_perfect_groups(deg::Int)
Return true
if the perfect groups of order n
are available via perfect_group
and all_perfect_groups
, otherwise false
.
Currently all perfect groups up to order $2 \cdot 10^6$ are available.
Examples
julia> has_perfect_groups(7200)
true
julia> has_perfect_groups(2*10^6+1)
false
number_perfect_groups
— Functionnumber_perfect_groups(n::IntegerUnion)
Return the number of perfect groups of order n
, up to isomorphism.
Examples
julia> number_perfect_groups(60)
1
julia> number_perfect_groups(1966080)
7344
orders_perfect_groups
— Functionorders_perfect_groups()
Return a sorted vector of all numbers to $2 \cdot 10^6$ that occur as orders of perfect groups.
Examples
julia> orders_perfect_groups()[1:10]
10-element Vector{Int64}:
1
60
120
168
336
360
504
660
720
960
perfect_group
— Functionperfect_group(::Type{T} = PermGroup, n::IntegerUnion, k::IntegerUnion)
Return the k
-th group of order n
and type T
in the catalogue of perfect groups in GAP's Perfect Groups Library. The type T
can be either PermGroup
or FPGroup
.
Examples
julia> perfect_group(60, 1)
A5
julia> gens(ans)
2-element Vector{PermGroupElem}:
(1,2)(4,5)
(2,3,4)
julia> perfect_group(FPGroup, 60, 1)
A5
julia> gens(ans)
2-element Vector{FPGroupElem}:
a
b
julia> perfect_group(60, 2)
ERROR: ArgumentError: there are only 1 perfect groups of order 60
perfect_group_identification
— Functionperfect_group_identification(G::GAPGroup)
Return (n, m)
such that G
is isomorphic with perfect_group(n, m)
. If G
is not perfect, an exception is thrown.
Examples
julia> perfect_group_identification(alternating_group(5))
(60, 1)
julia> perfect_group_identification(SL(2,7))
(336, 1)
Groups of small order
TODO: explain about the scope of this.
TODO: give proper attribution to the smallgrp package and other things used (in particular, cite it)
all_small_groups
— Functionall_small_groups(L...)
Return the list of all groups (up to isomorphism) satisfying the conditions described by the arguments. These conditions may be of one of the following forms:
func => intval
selects groups for which the functionfunc
returnsintval
func => list
selects groups for which the functionfunc
returns any element insidelist
func
selects groups for which the functionfunc
returnstrue
!func
selects groups for which the functionfunc
returnsfalse
As a special case, the first argument may also be one of the following:
intval
selects groups whose order equalsintval
; this is equivalent toorder => intval
intlist
selects groups whose order is inintlist
; this is equivalent toorder => intlist
Note that at least one of the conditions must impose a limit on the group order, otherwise an exception is thrown.
The following functions are currently supported as values for func
:
is_abelian
is_almostsimple
is_cyclic
is_nilpotent
is_perfect
is_quasisimple
is_simple
is_sporadic_simple
is_solvable
is_supersolvable
number_conjugacy_classes
order
The type of the returned groups is PcGroup
if the group is solvable, PermGroup
otherwise.
Examples
List all abelian non-cyclic groups of order 12:
julia> all_small_groups(12, !is_cyclic, is_abelian)
1-element Vector{PcGroup}:
<pc group of size 12 with 3 generators>
List groups of order 1 to 10 which are not abelian:
julia> all_small_groups(1:10, !is_abelian)
4-element Vector{PcGroup}:
<pc group of size 6 with 2 generators>
<pc group of size 8 with 3 generators>
<pc group of size 8 with 3 generators>
<pc group of size 10 with 2 generators>
has_number_small_groups
— Functionhas_number_small_groups(n::IntegerUnion)
Return true
if the number of groups of order n
is known, otherwise false
.
Examples
julia> has_number_small_groups(1024)
true
julia> has_number_small_groups(2048)
false
has_small_group_identification
— Functionhas_small_group_identification(n::IntegerUnion)
Return true
if identification for groups of order n
is available via small_group_identification
, otherwise false
.
Examples
julia> has_small_group_identification(256)
true
julia> has_small_group_identification(512)
false
has_small_groups
— Functionhas_small_groups(n::IntegerUnion)
Return true
if the groups of order n
are available via small_group
and all_small_groups
, otherwise false
.
Examples
julia> has_small_groups(512)
true
julia> has_small_groups(1024)
false
number_small_groups
— Functionnumber_small_groups(n::IntegerUnion)
Return the number of groups of order n
, up to isomorphism.
Examples
julia> number_small_groups(8)
5
julia> number_small_groups(4096)
ERROR: ArgumentError: the number of groups of order 4096 is not available
julia> number_small_groups(next_prime(ZZRingElem(2)^64))
1
small_group
— Functionsmall_group(::Type{T}, n::IntegerUnion, i::IntegerUnion) where T
small_group(n::IntegerUnion, i::IntegerUnion)
Return the i
-th group of order n
in the Small Groups Library. If a type T
is specified then an attempt is made to return the result with that type. If T
is omitted then the resulting group will have type PcGroup
if it is solvable, otherwise it will be of type PermGroup
.
Examples
julia> small_group(60, 4)
<pc group of size 60 with 4 generators>
julia> small_group(60, 5)
Group([ (1,2,3,4,5), (1,2,3) ])
julia> small_group(PcGroup, 60, 4)
<pc group of size 60 with 4 generators>
small_group_identification
— Functionsmall_group_identification(G::Group)
Return a pair of integer (n, m)
, where G
is isomorphic with small_group(n, m)
.
Examples
julia> small_group_identification(alternating_group(5))
(60, 5)
julia> small_group_identification(symmetric_group(20))
ERROR: ArgumentError: identification is not available for groups of order 2432902008176640000
Atlas of Group Representations
The functions in this section give access to data in the Atlas of Group Representations R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbott (). The isomorphism types of the groups in question are specified via names for the groups, which coincide with the names of the corresponding character tables in the library of character tables, see character_table(id::String, p::Int = 0)
.
number_atlas_groups
— Functionnumber_atlas_groups([::Type{T}, ]name::String) where T <: Union{PermGroup, MatrixGroup}
Return the number of groups from the Atlas of Group Representations whose isomorphism type is given by name
and have the type T
.
Examples
julia> number_atlas_groups("A5")
18
julia> number_atlas_groups(PermGroup, "A5")
3
julia> number_atlas_groups(MatrixGroup, "A5")
15
all_atlas_group_infos
— Functionall_atlas_group_infos(name::String, L...)
Return the vector of dictionaries that describe Atlas groups whose isomorphism types are given by name
and which satisfy the conditions in L
. These conditions may be of one of the following forms:
func => intval
selects groups for which the functionfunc
returnsintval
func => list
selects groups for which the functionfunc
returns any element insidelist
func
selects groups for which the functionfunc
returnstrue
!func
selects groups for which the functionfunc
returnsfalse
The following functions are currently supported as values for func
:
For permutation groups
degree
is_primitive
is_transitive
rank_action
transitivity
and for matrix groups
base_ring
character
characteristic
dim
Examples
julia> info = all_atlas_group_infos("A5", degree => [5, 6])
2-element Vector{Dict{Symbol, Any}}:
Dict(:repname => "A5G1-p5B0", :degree => 5, :name => "A5")
Dict(:repname => "A5G1-p6B0", :degree => 6, :name => "A5")
julia> atlas_group(info[1])
Group([ (1,2)(3,4), (1,3,5) ])
julia> info = all_atlas_group_infos("A5", dim => 4, characteristic => 3)
1-element Vector{Dict{Symbol, Any}}:
Dict(:dim => 4, :repname => "A5G1-f3r4B0", :name => "A5")
julia> atlas_group(info[1])
Matrix group of degree 4 over Finite field of degree 1 over GF(3)
atlas_group
— Functionatlas_group([::Type{T}, ]name::String) where T <: Union{PermGroup, MatrixGroup}
Return a group from the Atlas of Group Representations whose isomorphism type is given by name
and have the type T
. If T
is not given then PermGroup
is chosen if a permutation group for name
is available, and MatrixGroup
otherwise.
Examples
julia> atlas_group("A5") # alternating group A5
Group([ (1,2)(3,4), (1,3,5) ])
julia> atlas_group(MatrixGroup, "A5")
Matrix group of degree 4 over Finite field of degree 1 over GF(2)
julia> atlas_group("M11") # Mathieu group M11
Group([ (2,10)(4,11)(5,7)(8,9), (1,4,3,8)(2,5,6,9) ])
julia> atlas_group("M") # Monster group M
ERROR: ArgumentError: the group atlas does not provide a representation for M
atlas_group(info::Dict)
Return the group from the Atlas of Group Representations that is defined by info
. Typically, info
is obtained from all_atlas_group_infos
.
Examples
julia> info = all_atlas_group_infos("A5", degree => 5)
1-element Vector{Dict{Symbol, Any}}:
Dict(:repname => "A5G1-p5B0", :degree => 5, :name => "A5")
julia> atlas_group(info[1])
Group([ (1,2)(3,4), (1,3,5) ])
atlas_subgroup
— Functionatlas_subgroup(G::GAPGroup, nr::Int)
atlas_subgroup([::Type{T}, ]name::String, nr::Int) where T <: Union{PermGroup, MatrixGroup}
atlas_subgroup(info::Dict, nr::Int)
Return a pair (H, emb)
where H
is a representative of the nr
-th class of maximal subgroups of the group G
, and emb
is an embedding of H
into G
.
The group G
can be given as the first argument, in this case it is assumed that G
has been created with atlas_group
. Otherwise G
is the group obtained by calling atlas_group
with (T
and) name
or with info
.
If the Atlas of Group Representations does not provide the information to compute G
or to compute generators of H
from G
then an exception is thrown.
Examples
julia> g = atlas_group("M11"); # Mathieu group M11
julia> h1, emb = atlas_subgroup(g, 1); h1
Group([ (1,4)(2,10)(3,7)(6,9), (1,6,10,7,11,3,9,2)(4,5) ])
julia> order(h1) # largest maximal subgroup of M11
720
julia> h2, emb = atlas_subgroup("M11", 1); h2
Group([ (1,4)(2,10)(3,7)(6,9), (1,6,10,7,11,3,9,2)(4,5) ])
julia> h3, emb = atlas_subgroup(MatrixGroup, "M11", 1 ); h3
Matrix group of degree 10 over Finite field of degree 1 over GF(2)
julia> info = all_atlas_group_infos("M11", degree => 11);
julia> h4, emb = atlas_subgroup(info[1], 1); h4
Group([ (1,4)(2,10)(3,7)(6,9), (1,6,10,7,11,3,9,2)(4,5) ])