Number field operations
Creation of number fields
General number fields can be created using the function number_field. To create a simple number field given by a defining polynomial or a non-simple number field given by defining polynomials, the following functions can be used.
number_field — Methodnumber_field(f::Poly{NumFieldElem}, s::VarName;
cached::Bool = false, check::Bool = true) -> NumField, NumFieldElemGiven an irreducible polynomial $f \in K[x]$ over some number field $K$, this function creates the simple number field $L = K[x]/(f)$ and returns $(L, b)$, where $b$ is the class of $x$ in $L$. The string s is used only for printing the primitive element $b$.
check: Controls whether irreducibility of $f$ is checked.cached: Controls whether the result is cached.
Examples
julia> K, a = quadratic_field(5);
julia> Kt, t = K["t"];
julia> L, b = number_field(t^3 - 3, "b");number_field — Methodnumber_field(f::Vector{PolyRingElem{<:NumFieldElem}}, s::VarName="_\$", check = true)
-> NumField, Vector{NumFieldElem}Given a list $f_1, \ldots, f_n$ of univariate polynomials in $K[x]$ over some number field $K$, constructs the extension $K[x_1, \ldots, x_n]/(f_1(x_1), \ldots, f_n(x_n))$.
Examples
julia> Qx, x = QQ["x"];
julia> K, a = number_field([x^2 - 2, x^2 - 3], "a")
(Non-simple number field of degree 4 over QQ, AbsNonSimpleNumFieldElem[a1, a2])Many of the constructors have arguments of type VarName. If used, they define the appearance in printing, and printing only. The named parameter check can be true or false, the default being true. This parameter controls whether the polynomials defining the number field are tested for irreducibility or not. Given that this can be potentially very time consuming if the degree if large, one can disable this test. Note however, that the behaviour of Hecke is undefined if a reducible polynomial is used to define a field.
The named boolean parameter cached can be used to disable caching. Two number fields defined using the same polynomial from the identical polynomial ring and the same (identical) symbol/string will be identical if cached == true and different if cached == false.
For frequently used number fields like quadratic fields, cyclotomic fields or radical extensions, the following functions are provided:
cyclotomic_field — Methodcyclotomic_field(n::Int, s::VarName = "z_$n", t = "_\$"; cached::Bool = true)Return a tuple $R, x$ consisting of the parent object $R$ and generator $x$ of the $n$-th cyclotomic field, $\mathbb{Q}(\zeta_n)$. The supplied string s specifies how the generator of the number field should be printed. If provided, the string t specifies how the generator of the polynomial ring from which the number field is constructed, should be printed. If it is not supplied, a default dollar sign will be used to represent the variable.
quadratic_field — Methodquadratic_field(d::IntegerUnion) -> AbsSimpleNumField, AbsSimpleNumFieldElemReturns the field with defining polynomial $x^2 - d$.
Examples
julia> quadratic_field(5)
(Real quadratic field defined by x^2 - 5, sqrt(5))wildanger_field — Methodwildanger_field(n::Int, B::ZZRingElem) -> AbsSimpleNumField, AbsSimpleNumFieldElemReturns the field with defining polynomial $x^n + \sum_{i=0}^{n-1} (-1)^{n-i}Bx^i$. These fields tend to have non-trivial class groups.
Examples
julia> wildanger_field(3, ZZ(10), "a")
(Number field of degree 3 over QQ, a)radical_extension — Methodradical_extension(n::Int, a::NumFieldElem, s = "_$";
check = true, cached = true) -> NumField, NumFieldElemGiven an element $a$ of a number field $K$ and an integer $n$, create the simple extension of $K$ with the defining polynomial $x^n - a$.
Examples
julia> radical_extension(5, QQ(2), "a")
(Number field of degree 5 over QQ, a)rationals_as_number_field — Methodrationals_as_number_field() -> AbsSimpleNumField, AbsSimpleNumFieldElemReturns the rational numbers as the number field defined by $x - 1$.
Examples
julia> rationals_as_number_field()
(Number field of degree 1 over QQ, 1)Basic properties
basis — Methodbasis(L::SimpleNumField) -> Vector{NumFieldElem}Return the canonical basis of a simple extension $L/K$, that is, the elements $1,a,\dotsc,a^{d - 1}$, where $d$ is the degree of $K$ and $a$ the primitive element.
Examples
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^2 - 2, "a");
julia> basis(K)
2-element Vector{AbsSimpleNumFieldElem}:
1
abasis — Methodbasis(L::NonSimpleNumField) -> Vector{NumFieldElem}Returns the canonical basis of a non-simple extension $L/K$. If $L = K(a_1,\dotsc,a_n)$ where each $a_i$ has degree $d_i$, then the basis will be $a_1^{i_1}\dotsm a_d^{i_d}$ with $0 \leq i_j \leq d_j - 1$ for $1 \leq j \leq n$.
Examples
julia> Qx, x = QQ["x"];
julia> K, (a1, a2) = number_field([x^2 - 2, x^2 - 3], "a");
julia> basis(K)
4-element Vector{AbsNonSimpleNumFieldElem}:
1
a1
a2
a1*a2absolute_basis — Methodabsolute_basis(K::NumField) -> Vector{NumFieldElem}Returns an array of elements that form a basis of $K$ (as a vector space) over the rationals.
defining_polynomial — Methoddefining_polynomial(L::SimpleNumField) -> PolyRingElemGiven a simple number field $L/K$, constructed as $L = K[x]/(f)$, this function returns $f$.
defining_polynomials — Methoddefining_polynomials(L::NonSimpleNumField) -> Vector{PolyRingElem}Given a non-simple number field $L/K$, constructed as $L = K[x]/(f_1,\dotsc,f_r)$, return the vector containing the $f_i$'s.
absolute_primitive_element — Methodabsolute_primitive_element(K::NumField) -> NumFieldElemGiven a number field $K$, this function returns an element $\gamma \in K$ such that $K = \mathbf{Q}(\gamma)$.
component — Methodcomponent(L::NonSimpleNumField, i::Int) -> SimpleNumField, MapGiven a non-simple extension $L/K$, this function returns the simple number field corresponding to the $i$-th component of $L$ together with its embedding.
base_field — Methodbase_field(L::NumField) -> NumFieldGiven a number field $L/K$ this function returns the base field $K$. For absolute extensions this returns $\mathbf{Q}$.
Invariants
degree — Methoddegree(L::NumField) -> IntGiven a number field $L/K$, this function returns the degree of $L$ over $K$.
Examples
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^2 - 2, "a");
julia> degree(K)
2absolute_degree — Methodabsolute_degree(L::NumField) -> IntGiven a number field $L/K$, this function returns the degree of $L$ over $\mathbf Q$.
signature — Methodsignature(K::NumField)Return the signature of the number field of $K$.
Examples
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^2 - 2, "a");
julia> signature(K)
(2, 0)unit_group_rank — Methodunit_group_rank(K::NumField) -> IntReturn the rank of the unit group of any order of $K$.
class_number — Methodclass_number(K::AbsSimpleNumField) -> ZZRingElemReturns the class number of $K$.
relative_class_number — Methodrelative_class_number(K::AbsSimpleNumField) -> ZZRingElemReturns the relative class number of $K$. The field must be a CM-field.
regulator — Methodregulator(K::AbsSimpleNumField)Computes the regulator of $K$, i.e. the discriminant of the unit lattice for the maximal order of $K$.
discriminant — Methoddiscriminant(L::SimpleNumField) -> NumFieldElemThe discriminant of the defining polynomial of $L$, not the discriminant of the maximal order of $L$.
absolute_discriminant — Methodabsolute_discriminant(L::SimpleNumField, QQ) -> QQFieldElemThe absolute discriminant of the defining polynomial of $L$, not the discriminant of the maximal order of $L$. This is the norm of the discriminant times the $d$-th power of the discriminant of the base field, where $d$ is the degree of $L$.
Predicates
is_simple — Methodis_simple(L::NumField) -> BoolGiven a number field $L/K$ this function returns whether $L$ is simple, that is, whether $L/K$ is defined by a univariate polynomial.
is_absolute — Methodis_absolute(L::NumField) -> BoolReturns whether $L$ is an absolute extension, that is, whether the base field of $L$ is $\mathbf{Q}$.
is_totally_real — Methodis_totally_real(K::NumField) -> BoolReturn true if and only if $K$ is totally real, that is, if all roots of the defining polynomial are real.
is_totally_complex — Methodis_totally_complex(K::NumField) -> BoolReturn true if and only if $K$ is totally complex, that is, if all roots of the defining polynomial are not real.
is_cm_field — Methodis_cm_field(K::AbsSimpleNumField) -> Bool, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}Given a number field $K$, this function returns true and the complex conjugation if the field is CM, false and the identity otherwise.
is_kummer_extension — Methodis_kummer_extension(L::SimpleNumField) -> BoolTests if $L/K$ is a Kummer extension, that is, if the defining polynomial is of the form $x^n - b$ for some $b \in K$ and if $K$ contains the $n$-th roots of unity.
is_radical_extension — Methodis_radical_extension(L::SimpleNumField) -> BoolTests if $L/K$ is pure, that is, if the defining polynomial is of the form $x^n - b$ for some $b \in K$.
is_linearly_disjoint — Methodis_linearly_disjoint(K::SimpleNumField, L::SimpleNumField) -> BoolGiven two number fields $K$ and $L$ with the same base field $k$, this function returns whether $K$ and $L$ are linearly disjoint over $k$.
is_weakly_ramified — Methodis_weakly_ramified(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> BoolGiven a prime ideal $P$ of a number field $K$, return whether $P$ is weakly ramified, that is, whether the second ramification group is trivial.
is_tamely_ramified — Methodis_tamely_ramified(K::AbsSimpleNumField) -> BoolReturns whether the number field $K$ is tamely ramified.
is_tamely_ramified — Methodis_tamely_ramified(O::AbsSimpleNumFieldOrder, p::Union{Int, ZZRingElem}) -> BoolReturns whether the integer $p$ is tamely ramified in $\mathcal O$. It is assumed that $p$ is prime.
is_abelian — Methodis_abelian(L::NumField) -> BoolCheck if the number field $L/K$ is abelian over $K$. The function is probabilistic and assumes GRH.
Subfields
is_subfield — Methodis_subfield(K::SimpleNumField, L::SimpleNumField) -> Bool, MapReturn true and an injection from $K$ to $L$ if $K$ is a subfield of $L$. Otherwise the function returns false and a morphism mapping everything to $0$.
subfields — Methodsubfields(L::SimpleNumField) -> Vector{Tuple{NumField, Map}}Given a simple extension $L/K$, returns all subfields of $L$ containing $K$ as tuples $(k, \iota)$ consisting of a simple extension $k$ and an embedding $\iota k \to K$.
principal_subfields — Methodprincipal_subfields(L::SimpleNumField) -> Vector{Tuple{NumField, Map}}Return the principal subfields of $L$ as pairs consisting of a subfield $k$ and an embedding $k \to L$.
Examples
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^8 - x^4 + 1);
julia> length(principal_subfields(K))
8compositum — Methodcompositum(K::AbsSimpleNumField, L::AbsSimpleNumField) -> AbsSimpleNumField, Map, MapAssuming $L$ is normal (which is not checked), compute the compositum $C$ of the 2 fields together with the embedding of $K \to C$ and $L \to C$.
embedding — Methodembedding(k::NumField, K::NumField) -> MapAssuming $k$ is known to be a subfield of $K$, return the embedding map.
normal_closure — Methodnormal_closure(K::AbsSimpleNumField) -> AbsSimpleNumField, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}The normal closure of $K$ together with the embedding map.
relative_simple_extension — Methodrelative_simple_extension(K::NumField, k::NumField) -> RelSimpleNumFieldGiven two fields $K\supset k$, it returns $K$ as a simple relative extension $L$ of $k$ and an isomorphism $L \to K$.
is_subfield_normal — Method is_subfield_normal(K::AbsSimpleNumField, L::AbsSimpleNumField) -> Bool, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}Returns true and an injection from $K$ to $L$ if $K$ is a subfield of $L$. Otherwise the function returns false and a morphism mapping everything to 0.
This function assumes that $K$ is normal.
Conversion
simplify — Methodsimplify(K::AbsSimpleNumField; canonical::Bool = false) -> AbsSimpleNumField, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}Tries to find an isomorphic field $L$ given by a "simpler" defining polynomial. By default, "simple" is defined to be of smaller index, testing is done only using a LLL-basis of the maximal order.
If canonical is set to true, then a canonical defining polynomial is found, where canonical is using the definition of PARI's polredabs, which is described in http://beta.lmfdb.org/knowledge/show/nf.polredabs.
Both versions require a LLL reduced basis for the maximal order.
absolute_simple_field — Methodabsolute_simple_field(K::NumField) -> NumField, MapGiven a number field $K$, this function returns an absolute simple number field $M/\mathbf{Q}$ together with a $\mathbf{Q}$-linear isomorphism $M \to K$.
simple_extension — Methodsimple_extension(L::NonSimpleNumField) -> SimpleNumField, MapGiven a non-simple extension $L/K$, this function computes a simple extension $M/K$ and a $K$-linear isomorphism $M \to L$.
simplified_simple_extension — Methodsimplified_simple_extension(L::NonSimpleNumField) -> SimpleNumField, MapGiven a non-simple extension $L/K$, this function returns an isomorphic simple number field with a "small" defining equation together with the isomorphism.
Morphisms
is_isomorphic — Methodis_isomorphic(K::SimpleNumField, L::SimpleNumField) -> BoolReturn true if $K$ and $L$ are isomorphic, otherwise false.
is_isomorphic_with_map — Methodis_isomorphic_with_map(K::SimpleNumField, L::SimpleNumField) -> Bool, MapReturn true and an isomorphism from $K$ to $L$ if $K$ and $L$ are isomorphic. Otherwise the function returns false and a morphism mapping everything to $0$.
is_involution — Methodis_involution(f::NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}) -> BoolReturns true if $f$ is an involution, i.e. if $f^2$ is the identity, false otherwise.
fixed_field — Methodfixed_field(K::SimpleNumField,
sigma::Map;
simplify::Bool = true) -> number_field, NumFieldHom{AbsSimpleNumField, AbsSimpleNumField}Given a number field $K$ and an automorphism $\sigma$ of $K$, this function returns the fixed field of $\sigma$ as a pair $(L, i)$ consisting of a number field $L$ and an embedding of $L$ into $K$.
By default, the function tries to find a small defining polynomial of $L$. This can be disabled by setting simplify = false.
automorphism_list — Methodautomorphism_list(L::NumField) -> Vector{NumFieldHom}Given a number field $L/K$, return a list of all $K$-automorphisms of $L$.
automorphism_group — Methodautomorphism_group(K::NumField) -> GenGrp, GrpGenToNfMorSetGiven a number field $K$, this function returns a group $G$ and a map from $G$ to the automorphisms of $K$.
complex_conjugation — Methodcomplex_conjugation(K::AbsSimpleNumField)Given a normal number field, this function returns an automorphism which is the restriction of complex conjugation at one embedding.
Galois theory
normal_basis — Methodnormal_basis(L::NumField) -> NumFieldElemGiven a normal number field $L/K$, this function returns an element $a$ of $L$, such that the orbit of $a$ under the Galois group of $L/K$ is an $K$-basis of $L$.
decomposition_group — Methoddecomposition_group(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, m::Map)
-> Grp, GrpToGrpGiven a prime ideal $P$ of a number field $K$ and a map m return from automorphism_group(K), return the decomposition group of $P$ as a subgroup of the domain of m.
ramification_group — Methodramification_group(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, m::Map) -> Grp, GrpToGrpGiven a prime ideal $P$ of a number field $K$ and a map m return from automorphism_group(K), return the ramification group of $P$ as a subgroup of the domain of m.
inertia_subgroup — Methodinertia_subgroup(K::AbsSimpleNumField, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}, m::Map) -> Grp, GrpToGrpGiven a prime ideal $P$ of a number field $K$ and a map m return from automorphism_group(K), return the inertia subgroup of $P$ as a subgroup of the domain of m.
Infinite places
infinite_places — Methodinfinite_places(K::NumField) -> Vector{InfPlc}Return all infinite places of the number field.
Examples
julia> K, = quadratic_field(5);
julia> infinite_places(K)
2-element Vector{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}}:
Infinite place of real embedding with -2.24 of K
Infinite place of real embedding with 2.24 of Kreal_places — Methodreal_places(K::NumField) -> Vector{InfPlc}Return all infinite real places of the number field.
Examples
julia> K, = quadratic_field(5);
julia> infinite_places(K)
2-element Vector{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}}:
Infinite place of real embedding with -2.24 of K
Infinite place of real embedding with 2.24 of Kcomplex_places — Methodcomplex_places(K::NumField) -> Vector{InfPlc}Return all infinite complex places of $K$.
Examples
julia> K, = quadratic_field(-5);
julia> complex_places(K)
1-element Vector{InfPlc{AbsSimpleNumField, AbsSimpleNumFieldEmbedding}}:
Infinite place of imaginary embedding with 0.00 + 2.24 * i of Kisreal — Methodisreal(P::Plc)Return whether the embedding into $\mathbf{C}$ defined by $P$ is real or not.
is_complex — Methodis_complex(P::Plc) -> BoolReturn whether the embedding into $\mathbf{C}$ defined by $P$ is complex or not.
Miscellaneous
norm_equation — Methodnorm_equation(K::AnticNumerField, a) -> AbsSimpleNumFieldElemFor $a$ an integer or rational, try to find $T \in K$ s.th. $N(T) = a$. Raises an error if unsuccessful.
lorenz_module — Methodlorenz_module(k::AbsSimpleNumField, n::Int) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}Finds an ideal $A$ s.th. for all positive units $e = 1 \bmod A$ we have that $e$ is an $n$-th power. Uses Lorenz, number theory, 9.3.1. If containing is set, it has to be an integral ideal. The resulting ideal will be a multiple of this.
kummer_failure — Methodkummer_failure(x::AbsSimpleNumFieldElem, M::Int, N::Int) -> IntComputes the quotient of $N$ and $[K(\zeta_M, \sqrt[N](x))\colon K(\zeta_M)]$, where $K$ is the field containing $x$ and $N$ divides $M$.
is_defining_polynomial_nice — Methodis_defining_polynomial_nice(K::AbsSimpleNumField)Tests if the defining polynomial of $K$ is integral and monic.