Integer Lattices
An integer lattice $L$ is a finitely generated $\mathbb{Z}$-submodule of a quadratic vector space $V = \mathbb{Q}^n$ over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as $\mathbb{Z}$-lattices.
A $\mathbb{Z}$-lattice $L$ has the type ZZLat
. It is given in terms of its ambient quadratic space $V$ together with a basis matrix $B$ whose rows span $L$, i.e. $L = \mathbb{Z}^r B$ where $r$ is the ($\mathbb{Z}$-module) rank of $L$.
To access $V$ and $B$ see ambient_space(L::ZZLat)
and basis_matrix(L::ZZLat)
.
Creation of integer lattices
From a gram matrix
integer_lattice
— Methodinteger_lattice([B::MatElem]; gram) -> ZZLat
Return the Z-lattice with basis matrix $B$ inside the quadratic space with Gram matrix gram
.
If the keyword gram
is not specified, the Gram matrix is the identity matrix. If $B$ is not specified, the basis matrix is the identity matrix.
Examples
julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));
julia> gram_matrix(L) == matrix(QQ, 2, 2, [1//4, 0, 0, 4])
true
julia> L = integer_lattice(gram = matrix(ZZ, [2 -1; -1 2]));
julia> gram_matrix(L) == matrix(ZZ, [2 -1; -1 2])
true
In a quadratic space
lattice
— Methodlattice(V::AbstractSpace, basis::MatElem ; check::Bool = true) -> AbstractLat
Given an ambient space V
and a matrix basis
, return the lattice spanned by the rows of basis
inside V
. If V
is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.
By default, basis
is checked to be of full rank. This test can be disabled by setting check
to false.
Special lattices
root_lattice
— Methodroot_lattice(R::Symbol, n::Int) -> ZZLat
Return the root lattice of type R
given by :A
, :D
or :E
with parameter n
.
The type :I
with parameter n = 1
is also allowed and denotes the odd unimodular lattice of rank 1.
hyperbolic_plane_lattice
— Methodhyperbolic_plane_lattice(n::RationalUnion = 1) -> ZZLat
Return the hyperbolic plane with intersection form of scale n
, that is, the unique (up to isometry) even unimodular hyperbolic $\mathbb Z$-lattice of rank 2, rescaled by n
.
Examples
julia> L = hyperbolic_plane_lattice(6);
julia> gram_matrix(L)
[0 6]
[6 0]
julia> L = hyperbolic_plane_lattice(ZZ(-13));
julia> gram_matrix(L)
[ 0 -13]
[-13 0]
integer_lattice
— Methodinteger_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat
Given S = :H
or S = :U
, return a $\mathbb Z$-lattice admitting $n*J_2$ as Gram matrix in some basis, where $J_2$ is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere.
leech_lattice
— Functionleech_lattice() -> ZZLat
Return the Leech lattice.
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int
Return a triple L, v, h
where L
is the Leech lattice.
L is an h
-neighbor of the Niemeier lattice N
with respect to v
. This means that L / L ∩ N ≅ ℤ / h ℤ
. Here h
is the Coxeter number of the Niemeier lattice.
This implements the 23 holy constructions of the Leech lattice in [CS99].
Examples
julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));
julia> N = maximal_even_lattice(R) # Some Niemeier lattice
Integer lattice of rank 24 and degree 24
with gram matrix
[2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0]
[1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0]
[1 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0]
[1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 2 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 2 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 2 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0]
[0 0 0 0 0 0 0 0 1 2 1 1 0 0 0 0 0 0 0 0 1 0 1 1]
[0 0 0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0 0 0 1 1 0 1]
[0 0 0 0 0 0 0 0 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 1 0 0 0 0 0 2 1 1 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 1 0 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 1 0 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 0]
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 1 1 0 0 0 0]
[0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0]
[1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0 0]
[1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0]
[0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 2 1 1 1]
[0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 2 0 0]
[0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0]
[0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 2]
julia> minimum(N)
2
julia> det(N)
1
julia> L, v, h = leech_lattice(N);
julia> minimum(L)
4
julia> det(L)
1
julia> h == index(L, intersect(L, N))
true
We illustrate how the Leech lattice is constructed from N
, h
and v
.
julia> Zmodh, _ = residue_ring(ZZ, h);
julia> V = ambient_space(N);
julia> vG = map_entries(x->Zmodh(ZZ(x)), inner_product(V, v, basis_matrix(N)));
julia> LN = transpose(lift(Hecke.kernel(vG; side = :right)))*basis_matrix(N); # vectors whose inner product with `v` is divisible by `h`.
julia> lattice(V, LN) == intersect(L, N)
true
julia> gensL = vcat(LN, 1//h * v);
julia> lattice(V, gensL, isbasis=false) == L
true
k3_lattice
— Functionk3_lattice()
Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki form associated to a K3 surface.
Examples
julia> L = k3_lattice();
julia> is_unimodular(L)
true
julia> signature_tuple(L)
(3, 0, 19)
mukai_lattice
— Methodmukai_lattice(S::Symbol = :K3; extended::Bool = false)
Return the (extended) Mukai lattice.
If S == :K3
, it returns the (extended) Mukai lattice associated to hyperkaehler manifolds which are deformation equivalent to a moduli space of stable sheaves on a K3 surface.
If S == :Ab
, it returns the (extended) Mukai lattice associated to hyperkaehler manifolds which are deformation equivalent to a moduli space of stable sheaves on an abelian surface.
Examples
julia> L = mukai_lattice();
julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 20)
Local symbol:
Local genus symbol at 2: 1^24
julia> L = mukai_lattice(; extended = true);
julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 21)
Local symbol:
Local genus symbol at 2: 1^26
julia> L = mukai_lattice(:Ab);
julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 4)
Local symbol:
Local genus symbol at 2: 1^8
julia> L = mukai_lattice(:Ab; extended = true);
julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 5)
Local symbol:
Local genus symbol at 2: 1^10
hyperkaehler_lattice
— Methodhyperkaehler_lattice(S::Symbol; n::Int = 2)
Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki form on a hyperkaehler manifold whose deformation type is determined by S
and n
.
- If
S == :K3
orS == :Kum
, thenn
must be an integer bigger than 2; - If
S == :OG6
orS == :OG10
, the value ofn
has no effect.
Examples
julia> L = hyperkaehler_lattice(:Kum; n = 3)
Integer lattice of rank 7 and degree 7
with gram matrix
[0 1 0 0 0 0 0]
[1 0 0 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 0 -8]
julia> L = hyperkaehler_lattice(:OG6)
Integer lattice of rank 8 and degree 8
with gram matrix
[0 1 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0]
[0 0 0 1 0 0 0 0]
[0 0 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0]
[0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 -2 0]
[0 0 0 0 0 0 0 -2]
julia> L = hyperkaehler_lattice(:OG10);
julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 21)
Local symbols:
Local genus symbol at 2: 1^-24
Local genus symbol at 3: 1^-23 3^1
julia> L = hyperkaehler_lattice(:K3; n = 3);
julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 20)
Local symbol:
Local genus symbol at 2: 1^22 4^1_7
From a genus
Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus)
)
Rescaling the Quadratic Form
rescale
— Methodrescale(L::ZZLat, r::RationalUnion) -> ZZLat
Return the lattice L
in the quadratic space with form r \Phi
.
Examples
This can be useful to apply methods intended for positive definite lattices.
julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
Integer lattice of rank 2 and degree 2
with gram matrix
[-1 0]
[ 0 -1]
julia> shortest_vectors(rescale(L, -1))
2-element Vector{Vector{ZZRingElem}}:
[0, 1]
[1, 0]
Attributes
ambient_space
— Methodambient_space(L::AbstractLat) -> AbstractSpace
Return the ambient space of the lattice L
. If the ambient space is not known, an error is raised.
basis_matrix
— Methodbasis_matrix(L::ZZLat) -> QQMatrix
Return the basis matrix $B$ of the integer lattice $L$.
The lattice is given by the row span of $B$ seen inside of the ambient quadratic space of $L$.
gram_matrix
— Methodgram_matrix(L::ZZLat) -> QQMatrix
Return the gram matrix of $L$.
Examples
julia> L = integer_lattice(matrix(ZZ, [2 0; -1 2]));
julia> gram_matrix(L)
[ 4 -2]
[-2 5]
rational_span
— Methodrational_span(L::ZZLat) -> QuadSpace
Return the rational span of $L$, which is the quadratic space with Gram matrix equal to gram_matrix(L)
.
Examples
julia> L = integer_lattice(matrix(ZZ, [2 0; -1 2]));
julia> rational_span(L)
Quadratic space of dimension 2
over rational field
with gram matrix
[ 4 -2]
[-2 5]
Invariants
rank
— Methodrank(L::AbstractLat) -> Int
Return the rank of the underlying module of the lattice L
.
det
— Methoddet(L::ZZLat) -> QQFieldElem
Return the determinant of the gram matrix of L
.
scale
— Methodscale(L::ZZLat) -> QQFieldElem
Return the scale of L
.
The scale of L
is defined as the positive generator of the $\mathbb Z$-ideal generated by $\{\Phi(x, y) : x, y \in L\}$.
norm
— Methodnorm(L::ZZLat) -> QQFieldElem
Return the norm of L
.
The norm of L
is defined as the positive generator of the $\mathbb Z$- ideal generated by $\{\Phi(x,x) : x \in L\}$.
iseven
— Methodiseven(L::ZZLat) -> Bool
Return whether L
is even.
An integer lattice L
in the rational quadratic space $(V,\Phi)$ is called even if $\Phi(x,x) \in 2\mathbb{Z}$ for all $x in L$.
is_integral
— Methodis_integral(L::AbstractLat) -> Bool
Return whether the lattice L
is integral.
is_primary_with_prime
— Methodis_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem
Given a $\mathbb Z$-lattice L
, return whether L
is primary, that is whether L
is integral and its discriminant group (see discriminant_group
) is a p
-group for some prime number p
. In case it is, p
is also returned as second output.
Note that for unimodular lattices, this function returns (true, 1)
. If the lattice is not primary, the second return value is -1
by default.
is_primary
— Methodis_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
Given an integral $\mathbb Z$-lattice L
and a prime number p
, return whether L
is p
-primary, that is whether its discriminant group (see discriminant_group
) is a p
-group.
is_elementary_with_prime
— Methodis_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem
Given a $\mathbb Z$-lattice L
, return whether L
is elementary, that is whether L
is integral and its discriminant group (see discriminant_group
) is an elemenentary p
-group for some prime number p
. In case it is, p
is also returned as second output.
Note that for unimodular lattices, this function returns (true, 1)
. If the lattice is not elementary, the second return value is -1
by default.
is_elementary
— Methodis_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool
Given an integral $\mathbb Z$-lattice L
and a prime number p
, return whether L
is p
-elementary, that is whether its discriminant group (see discriminant_group
) is an elementary p
-group.
The Genus
For an integral lattice The genus of an integer lattice collects its local invariants. genus(::ZZLat)
mass
— Methodmass(L::ZZLat) -> QQFieldElem
Return the mass of the genus of L
.
genus_representatives
— Methodgenus_representatives(L::ZZLat) -> Vector{ZZLat}
Return representatives for the isometry classes in the genus of L
.
Real invariants
signature_tuple
— Methodsignature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}
Return the number of (positive, zero, negative) inertia of L
.
is_positive_definite
— Methodis_positive_definite(L::AbstractLat) -> Bool
Return whether the rational span of the lattice L
is positive definite.
is_negative_definite
— Methodis_negative_definite(L::AbstractLat) -> Bool
Return whether the rational span of the lattice L
is negative definite.
is_definite
— Methodis_definite(L::AbstractLat) -> Bool
Return whether the rational span of the lattice L
is definite.
Isometries
automorphism_group_generators
— Methodautomorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}
Return generators of the automorphism group of $E$.
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
depth::Int = -1, bacher_depth::Int = 0)
-> Vector{MatElem}
Given a definite lattice L
, return generators for the automorphism group of L
. If ambient_representation == true
(the default), the transformations are represented with respect to the ambient space of L
. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L
.
Setting the parameters depth
and bacher_depth
to a positive value may improve performance. If set to -1
(default), the used value of depth
is chosen heuristically depending on the rank of L
. By default, bacher_depth
is set to 0
.
automorphism_group_order
— Methodautomorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int
Given a definite lattice L
, return the order of the automorphism group of L
.
Setting the parameters depth
and bacher_depth
to a positive value may improve performance. If set to -1
(default), the used value of depth
is chosen heuristically depending on the rank of L
. By default, bacher_depth
is set to 0
.
is_isometric
— Methodis_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool
Return whether the lattices L
and M
are isometric.
Setting the parameters depth
and bacher_depth
to a positive value may improve performance. If set to -1
(default), the used value of depth
is chosen heuristically depending on the rank of L
. By default, bacher_depth
is set to 0
.
is_locally_isometric
— Methodis_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool
Return whether L
and M
are isometric over the p
-adic integers.
i.e. whether $L \otimes \mathbb{Z}_p \cong M\otimes \mathbb{Z}_p$.
Root lattices
root_lattice_recognition
— Methodroot_lattice_recognition(L::ZZLat)
Return the ADE type of the root sublattice of L
.
The root sublattice is the lattice spanned by the vectors of squared length $1$ and $2$. The odd lattice of rank 1 and determinant $1$ is denoted by (:I, 1)
.
Input:
L
– a definite and integral $\mathbb{Z}$-lattice.
Output:
Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.
For more recognizable gram matrices use root_lattice_recognition_fundamental
.
Examples
julia> L = integer_lattice(gram=ZZ[4 0 0 0 3 0 3 0;
0 16 8 12 2 12 6 10;
0 8 8 6 2 8 4 5;
0 12 6 10 2 9 5 8;
3 2 2 2 4 2 4 2;
0 12 8 9 2 12 6 9;
3 6 4 5 4 6 6 5;
0 10 5 8 2 9 5 8])
Integer lattice of rank 8 and degree 8
with gram matrix
[4 0 0 0 3 0 3 0]
[0 16 8 12 2 12 6 10]
[0 8 8 6 2 8 4 5]
[0 12 6 10 2 9 5 8]
[3 2 2 2 4 2 4 2]
[0 12 8 9 2 12 6 9]
[3 6 4 5 4 6 6 5]
[0 10 5 8 2 9 5 8]
julia> R = root_lattice_recognition(L)
([(:A, 1), (:D, 6)], ZZLat[Integer lattice of rank 1 and degree 8, Integer lattice of rank 6 and degree 8])
julia> L = integer_lattice(; gram = QQ[1 0 0 0;
0 9 3 3;
0 3 2 1;
0 3 1 11])
Integer lattice of rank 4 and degree 4
with gram matrix
[1 0 0 0]
[0 9 3 3]
[0 3 2 1]
[0 3 1 11]
julia> root_lattice_recognition(L)
([(:A, 1), (:I, 1)], ZZLat[Integer lattice of rank 1 and degree 4, Integer lattice of rank 1 and degree 4])
root_lattice_recognition_fundamental
— Methodroot_lattice_recognition_fundamental(L::ZZLat)
Return the ADE type of the root sublattice of L
as well as the corresponding irreducible root sublattices with basis given by a fundamental root system.
The type (:I, 1)
corresponds to the odd unimodular root lattice of rank 1.
Input:
L
– a definite and integral $\mathbb Z$-lattice.
Output:
- the root sublattice, with basis given by a fundamental root system
- the ADE types
- a Vector consisting of the irreducible root sublattices.
Examples
julia> L = integer_lattice(gram=ZZ[4 0 0 0 3 0 3 0;
0 16 8 12 2 12 6 10;
0 8 8 6 2 8 4 5;
0 12 6 10 2 9 5 8;
3 2 2 2 4 2 4 2;
0 12 8 9 2 12 6 9;
3 6 4 5 4 6 6 5;
0 10 5 8 2 9 5 8])
Integer lattice of rank 8 and degree 8
with gram matrix
[4 0 0 0 3 0 3 0]
[0 16 8 12 2 12 6 10]
[0 8 8 6 2 8 4 5]
[0 12 6 10 2 9 5 8]
[3 2 2 2 4 2 4 2]
[0 12 8 9 2 12 6 9]
[3 6 4 5 4 6 6 5]
[0 10 5 8 2 9 5 8]
julia> R = root_lattice_recognition_fundamental(L);
julia> gram_matrix(R[1])
[2 0 0 0 0 0 0]
[0 2 0 -1 0 0 0]
[0 0 2 -1 0 0 0]
[0 -1 -1 2 -1 0 0]
[0 0 0 -1 2 -1 0]
[0 0 0 0 -1 2 -1]
[0 0 0 0 0 -1 2]
ADE_type
— MethodADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}
Return the type of the irreducible root lattice with gram matrix G
.
See also root_lattice_recognition
.
Examples
julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
(:A, 3)
coxeter_number
— Methodcoxeter_number(ADE::Symbol, n) -> Int
Return the Coxeter number of the corresponding ADE root lattice.
If $L$ is a root lattice and $R$ its set of roots, then the Coxeter number $h$ is $|R|/n$ where n
is the rank of $L$.
Examples
julia> coxeter_number(:D, 4)
6
highest_root
— Methodhighest_root(ADE::Symbol, n) -> ZZMatrix
Return coordinates of the highest root of root_lattice(ADE, n)
.
Examples
julia> highest_root(:E, 6)
[1 2 3 2 1 2]
Module operations
Most module operations assume that the lattices live in the same ambient space. For instance only lattices in the same ambient space compare.
==
— MethodReturn true
if both lattices have the same ambient quadratic space and the same underlying module.
is_sublattice
— Methodis_sublattice(L::AbstractLat, M::AbstractLat) -> Bool
Return whether M
is a sublattice of the lattice L
.
is_sublattice_with_relations
— Methodis_sublattice_with_relations(M::ZZLat, N::ZZLat) -> Bool, QQMatrix
Returns whether $N$ is a sublattice of $M$. In this case, the second return value is a matrix $B$ such that $B B_M = B_N$, where $B_M$ and $B_N$ are the basis matrices of $M$ and $N$ respectively.
+
— Method+(L::AbstractLat, M::AbstractLat) -> AbstractLat
Return the sum of the lattices L
and M
.
The lattices L
and M
must have the same ambient space.
*
— Method*(a::RationalUnion, L::ZZLat) -> ZZLat
Return the lattice $aM$ inside the ambient space of $M$.
intersect
— Methodintersect(L::AbstractLat, M::AbstractLat) -> AbstractLat
Return the intersection of the lattices L
and M
.
The lattices L
and M
must have the same ambient space.
in
— MethodBase.in(v::Vector, L::ZZLat) -> Bool
Return whether the vector v
lies in the lattice L
.
in
— MethodBase.in(v::QQMatrix, L::ZZLat) -> Bool
Return whether the row span of v
lies in the lattice L
.
primitive_closure
— Methodprimitive_closure(M::ZZLat, N::ZZLat) -> ZZLat
Given two $\mathbb Z$-lattices M
and N
with $N \subseteq \mathbb{Q} M$, return the primitive closure $M \cap \mathbb{Q} N$ of N
in M
.
Examples
julia> M = root_lattice(:D, 6);
julia> N = lattice_in_same_ambient_space(M, 3*basis_matrix(M)[1:1,:]);
julia> basis_matrix(N)
[3 0 0 0 0 0]
julia> N2 = primitive_closure(M, N)
Integer lattice of rank 1 and degree 6
with gram matrix
[2]
julia> basis_matrix(N2)
[1 0 0 0 0 0]
julia> M2 = primitive_closure(dual(M), M);
julia> is_integral(M2)
false
is_primitive
— Methodis_primitive(M::ZZLat, N::ZZLat) -> Bool
Given two $\mathbb Z$-lattices $N \subseteq M$, return whether N
is a primitive sublattice of M
.
Examples
julia> U = hyperbolic_plane_lattice(3);
julia> bU = basis_matrix(U);
julia> e1, e2 = bU[1:1,:], bU[2:2,:]
([1 0], [0 1])
julia> N = lattice_in_same_ambient_space(U, e1 + e2)
Integer lattice of rank 1 and degree 2
with gram matrix
[6]
julia> is_primitive(U, N)
true
julia> M = root_lattice(:A, 3);
julia> f = matrix(QQ, 3, 3, [0 1 1; -1 -1 -1; 1 1 0]);
julia> N = kernel_lattice(M, f+1)
Integer lattice of rank 1 and degree 3
with gram matrix
[4]
julia> is_primitive(M, N)
true
is_primitive
— Methodis_primitive(L::ZZLat, v::Union{Vector, QQMatrix}) -> Bool
Return whether the vector v
is primitive in L
.
A vector v
in a $\mathbb Z$-lattice L
is called primitive if for all w
in L
such that $v = dw$ for some integer d
, then $d = \pm 1$.
divisibility
— Methoddivisibility(L::ZZLat, v::Union{Vector, QQMatrix}) -> QQFieldElem
Return the divisibility of v
with respect to L
.
For a vector v
in the ambient quadratic space $(V, \Phi)$ of L
, we call the divisibility of v
with the respect to L
the non-negative generator of the fractional $\mathbb Z$-ideal $\Phi(v, L)$.
Embeddings
Categorical constructions
direct_sum
— Methoddirect_sum(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
direct_sum(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their direct sum $L := L_1 \oplus \ldots \oplus L_n$, together with the injections $L_i \to L$. (seen as maps between the corresponding ambient spaces).
For objects of type ZZLat
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L
as a direct product with the projections $L \to L_i$, one should call direct_product(x)
. If one wants to obtain L
as a biproduct with the injections $L_i \to L$ and the projections $L \to L_i$, one should call biproduct(x)
.
direct_product
— Methoddirect_product(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
direct_product(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their direct product $L := L_1 \times \ldots \times L_n$, together with the projections $L \to L_i$. (seen as maps between the corresponding ambient spaces).
For objects of type ZZLat
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L
as a direct sum with the injections $L_i \to L$, one should call direct_sum(x)
. If one wants to obtain L
as a biproduct with the injections $L_i \to L$ and the projections $L \to L_i$, one should call biproduct(x)
.
biproduct
— Methodbiproduct(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their biproduct $L := L_1 \oplus \ldots \oplus L_n$, together with the injections $L_i \to L$ and the projections $L \to L_i$. (seen as maps between the corresponding ambient spaces).
For objects of type ZZLat
, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L
as a direct sum with the injections $L_i \to L$, one should call direct_sum(x)
. If one wants to obtain L
as a direct product with the projections $L \to L_i$, one should call direct_product(x)
.
Orthogonal sublattices
orthogonal_submodule
— Methodorthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat
Return the largest submodule of $L$ orthogonal to $S$.
irreducible_components
— Methodirreducible_components(L::ZZLat) -> Vector{ZZLat}
Return the irreducible components $L_i$ of the positive definite lattice $L$.
This yields a maximal orthogonal splitting of L
as
\[L = \bigoplus_i L_i.\]
Dual lattice
dual
— Methoddual(L::AbstractLat) -> AbstractLat
Return the dual lattice of the lattice L
.
Discriminant group
See discriminant_group(L::ZZLat)
.
Overlattices
glue_map
— Methodglue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
-> Tuple{TorQuadModuleMap, TorQuadModuleMap, TorQuadModuleMap}
Given three integral $\mathbb Z$-lattices L
, S
and R
, with S
and R
primitive sublattices of L
and such that the sum of the ranks of S
and R
is equal to the rank of L
, return the glue map $\gamma$ of the primitive extension $S+R \subseteq L$, as well as the inclusion maps of the domain and codomain of $\gamma$ into the respective discriminant groups of S
and R
.
Example
julia> M = root_lattice(:E,8);
julia> f = matrix(QQ, 8, 8, [-1 -1 0 0 0 0 0 0;
1 0 0 0 0 0 0 0;
0 1 1 0 0 0 0 0;
0 0 0 1 0 0 0 0;
0 0 0 0 1 0 0 0;
0 0 0 0 0 1 1 0;
-2 -4 -6 -5 -4 -3 -2 -3;
0 0 0 0 0 0 0 1]);
julia> S = kernel_lattice(M ,f-1)
Integer lattice of rank 4 and degree 8
with gram matrix
[12 -3 0 -3]
[-3 2 -1 0]
[ 0 -1 2 0]
[-3 0 0 2]
julia> R = kernel_lattice(M , f^2+f+1)
Integer lattice of rank 4 and degree 8
with gram matrix
[ 2 -1 0 0]
[-1 2 -6 0]
[ 0 -6 30 -3]
[ 0 0 -3 2]
julia> glue, iS, iR = glue_map(M, S, R)
(Map: finite quadratic module -> finite quadratic module, Map: finite quadratic module -> finite quadratic module, Map: finite quadratic module -> finite quadratic module)
julia> is_bijective(glue)
true
overlattice
— Methodoverlattice(glue_map::TorQuadModuleMap) -> ZZLat
Given the glue map of a primitive extension of $\mathbb Z$-lattices $S+R \subseteq L$, return L
.
Example
julia> M = root_lattice(:E,8);
julia> f = matrix(QQ, 8, 8, [ 1 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0;
1 2 4 4 3 2 1 2;
-2 -4 -6 -5 -4 -3 -2 -3;
2 4 6 4 3 2 1 3;
-1 -2 -3 -2 -1 0 0 -2;
0 0 0 0 0 -1 0 0;
-1 -2 -3 -3 -2 -1 0 -1]);
julia> S = kernel_lattice(M ,f-1)
Integer lattice of rank 4 and degree 8
with gram matrix
[ 2 -1 0 0]
[-1 2 -1 0]
[ 0 -1 12 -15]
[ 0 0 -15 20]
julia> R = kernel_lattice(M , f^4+f^3+f^2+f+1)
Integer lattice of rank 4 and degree 8
with gram matrix
[10 -4 0 1]
[-4 2 -1 0]
[ 0 -1 4 -3]
[ 1 0 -3 4]
julia> glue, iS, iR = glue_map(M, S, R);
julia> overlattice(glue) == M
true
local_modification
— Methodlocal_modification(M::ZZLat, L::ZZLat, p)
Return a local modification of M
that matches L
at p
.
INPUT:
- $M$ – a
\mathbb{Z}_p
-maximal lattice - $L$ – the a lattice isomorphic to
M
over\QQ_p
- $p$ – a prime number
OUTPUT:
an integral lattice M'
in the ambient space of M
such that M
and M'
are locally equal at all completions except at p
where M'
is locally isometric to the lattice L
.
maximal_integral_lattice
— Methodmaximal_integral_lattice(L::AbstractLat) -> AbstractLat
Given a lattice L
with integral norm, return a maximal integral overlattice M
of L
.
Canonical sublattices
even_sublattice
— Methodeven_sublattice(L::ZZLat) -> ZZLat
Given an integral $\mathbb{Z}$-lattice L
, i.e. such that the bilinear form on L
is integral, return the largest even sublattice L0
of L
.
If L
is already even, then $L0 = L$.
Examples
julia> L = integer_lattice(; gram=QQ[3 0; 0 16])
Integer lattice of rank 2 and degree 2
with gram matrix
[3 0]
[0 16]
julia> L0 = even_sublattice(L)
Integer lattice of rank 2 and degree 2
with gram matrix
[12 0]
[ 0 16]
julia> index(L, L0)
2
Sublattices defined by endomorphisms
kernel_lattice
— Methodkernel_lattice(L::ZZLat, f::MatElem;
ambient_representation::Bool = true) -> ZZLat
Given a $\mathbf{Z}$-lattice $L$ and a matrix $f$ inducing an endomorphism of $L$, return $\ker(f)$ is a sublattice of $L$.
If ambient_representation
is true
(the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.
invariant_lattice
— Methodinvariant_lattice(L::ZZLat, G::Vector{MatElem};
ambient_representation::Bool = true) -> ZZLat
invariant_lattice(L::ZZLat, G::MatElem;
ambient_representation::Bool = true) -> ZZLat
Given a $\mathbf{Z}$-lattice $L$ and a list of matrices $G$ inducing endomorphisms of $L$ (or just one matrix $G$), return the lattice $L^G$, consisting on elements fixed by $G$.
If ambient_representation
is true
(the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.
coinvariant_lattice
— Methodcoinvariant_lattice(L::ZZLat, G::Vector{MatElem};
ambient_representation::Bool = true) -> ZZLat
coinvariant_lattice(L::ZZLat, G::MatElem;
ambient_representation::Bool = true) -> ZZLat
Given a $\mathbf{Z}$-lattice $L$ and a list of matrices $G$ inducing endomorphisms of $L$ (or just one matrix $G$), return the orthogonal complement $L_G$ in $L$ of the fixed lattice $L^G$ (see invariant_lattice
).
If ambient_representation
is true
(the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.
Computing embeddings
embed
— Methodembed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding
Return a (primitive) embedding of the integral lattice S
into some lattice in the genus of G
.
julia> G = integer_genera((8,0), 1, even=true)[1];
julia> L, S, i = embed(root_lattice(:A,5), G);
embed_in_unimodular
— Methodembed_in_unimodular(S::ZZLat, pos::Int, neg::Int, primitive=true, even=true) -> Bool, L, S', iS, iR
Return a (primitive) embedding of the integral lattice S
into some (even) unimodular lattice of signature (pos, neg)
.
For now this works only for even lattices.
julia> NS = direct_sum(integer_lattice(:U), rescale(root_lattice(:A, 16), -1))[1];
julia> LK3, iNS, i = embed_in_unimodular(NS, 3, 19);
julia> genus(LK3)
Genus symbol for integer lattices
Signatures: (3, 0, 19)
Local symbol:
Local genus symbol at 2: 1^22
julia> iNS
Integer lattice of rank 18 and degree 22
with gram matrix
[0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 1 -2 1 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 1 -2 1 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 1 -2 1 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 1 -2 1 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 1 -2 1 0 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 1 -2 1 0 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -2 1 0]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -2 1]
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -2]
julia> is_primitive(LK3, iNS)
true
LLL, Short and Close Vectors
LLL and indefinite LLL
lll
— Methodlll(L::ZZLat, same_ambient::Bool = true) -> ZZLat
Given an integral $\mathbb Z$-lattice L
with basis matrix B
, compute a basis C
of L
such that the gram matrix $G_C$ of L
with respect to C
is LLL-reduced.
By default, it creates the lattice in the same ambient space as L
. This can be disabled by setting same_ambient = false
. Works with both definite and indefinite lattices.
Short Vectors
short_vectors
— Functionshort_vectors(L::ZZLat, [lb = 0], ub, [elem_type = ZZRingElem]; check::Bool = true)
-> Vector{Tuple{Vector{elem_type}, QQFieldElem}}
Return all tuples (v, n)
such that $n = |v G v^t|$ satisfies lb <= n <= ub
, where G
is the Gram matrix of L
and v
is non-zero.
Note that the vectors are computed up to sign (so only one of v
and -v
appears).
It is assumed and checked that L
is definite.
See also short_vectors_iterator
for an iterator version.
shortest_vectors
— Functionshortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
-> QQFieldElem, Vector{elem_type}, QQFieldElem}
Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v
and -v
appears).
It is assumed and checked that L
is definite.
See also minimum
.
short_vectors_iterator
— Functionshort_vectors_iterator(L::ZZLat, [lb = 0], ub,
[elem_type = ZZRingElem]; check::Bool = true)
-> Tuple{Vector{elem_type}, QQFieldElem} (iterator)
Return an iterator for all tuples (v, n)
such that $n = |v G v^t|$ satisfies lb <= n <= ub
, where G
is the Gram matrix of L
and v
is non-zero.
Note that the vectors are computed up to sign (so only one of v
and -v
appears).
It is assumed and checked that L
is definite.
See also short_vectors
.
minimum
— Methodminimum(L::ZZLat) -> QQFieldElem
Return the minimum absolute squared length among the non-zero vectors in L
.
kissing_number
— Methodkissing_number(L::ZZLat) -> Int
Return the Kissing number of the sphere packing defined by L
.
This is the number of non-overlapping spheres touching any other given sphere.
Close Vectors
close_vectors
— Methodclose_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
-> Vector{Tuple{Vector{Int}}, QQFieldElem}
Return all tuples (x, d)
where x
is an element of L
such that d = b(v - x, v - x) <= ub
. If lb
is provided, then also lb <= d
.
If filter
is not nothing
, then only those x
with filter(x)
evaluating to true
are returned.
By default, it will be checked whether L
is positive definite. This can be disabled setting check = false
.
Both input and output are with respect to the basis matrix of L
.
Examples
julia> L = integer_lattice(matrix(QQ, 2, 2, [1, 0, 0, 2]));
julia> close_vectors(L, [1, 1], 1)
3-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}:
([2, 1], 1)
([0, 1], 1)
([1, 1], 0)
julia> close_vectors(L, [1, 1], 1, 1)
2-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}:
([2, 1], 1)
([0, 1], 1)