Elements
Elements in a finitely generated abelian group are of type FinGenAbGroupElem and are always given as a linear combination of the generators. Internally this representation is normalised to have a unique representative.
Creation
In addition to the standard function id, zero and one that can be used to create the neutral element, we also support more targeted creation:
gens — Methodgens(G::FinGenAbGroup) -> Vector{FinGenAbGroupElem}The sequence of generators of $G$.
FinGenAbGroup — Method(A::FinGenAbGroup)(x::Vector{ZZRingElem}) -> FinGenAbGroupElemGiven an array x of elements of type ZZRingElem of the same length as ngens($A$), this function returns the element of $A$ with components x.
FinGenAbGroup — Method(A::FinGenAbGroup)(x::ZZMatrix) -> FinGenAbGroupElemGiven a matrix over the integers with either $1$ row and ngens(A) columns or ngens(A) rows and $1$ column, this function returns the element of $A$ with components x.
getindex — Methodgetindex(A::FinGenAbGroup, i::Int) -> FinGenAbGroupElemReturns the element of $A$ with components $(0,\dotsc,0,1,0,\dotsc,0)$, where the $1$ is at the $i$-th position.
rand — Methodrand(G::FinGenAbGroup) -> FinGenAbGroupElemReturns an element of $G$ chosen uniformly at random.
rand — Methodrand(G::FinGenAbGroup, B::ZZRingElem) -> FinGenAbGroupElemFor a (potentially infinite) abelian group $G$, return an element chosen uniformly at random with coefficients bounded by $B$.
parent — Methodparent(x::FinGenAbGroupElem) -> FinGenAbGroupReturns the parent of $x$.
Access
getindex — Methodgetindex(x::FinGenAbGroupElem, v::AbstractVector{Int}) -> Vector{ZZRingElem}Returns the $i$-th components of the element $x$ where $i \in v$.
getindex — Methodgetindex(x::FinGenAbGroupElem, i::Int) -> ZZRingElemReturns the $i$-th component of the element $x$.
Predicates
We have the standard predicates iszero, isone and is_identity to test an element for being trivial.
Invariants
order — Methodorder(A::FinGenAbGroupElem) -> ZZRingElemReturns the order of $A$. It is assumed that the order is finite.
Iterator
One can iterate over the elements of a finite abelian group.
julia> G = abelian_group(ZZRingElem[1 2; 3 4])
Finitely generated abelian group
with 2 generators and 2 relations and relation matrix
[1 2]
[3 4]
julia> for g in G
println(g)
end
Abelian group element [0, 0]
Abelian group element [0, 1]