Genera for hermitian lattices

Local genus symbols

Definition 8.3.1 ([Kir16]) Let $L$ be a hermitian lattice over $E/K$ and let $\mathfrak p$ be a prime ideal of $\mathcal O_K$. Let $\mathfrak P$ be the largest ideal of $\mathcal O_E$ over $\mathfrak p$ being invariant under the involution of $E$. We suppose that we are given a Jordan decomposition

\[ L_{\mathfrak p} = \perp_{i=1}^tL_i\]

where the Jordan block $L_i$ is $\mathfrak P^{s_i}$-modular for $1 \leq i \leq t$, for a strictly increasing sequence of integers $s_1 < \ldots < s_t$. In particular, $\mathfrak s(L_i) = \mathfrak P^{s_i}$. Then, the local genus symbol $g(L, \mathfrak p)$ of $L_{\mathfrak p}$ is defined to be:

  • if $\mathfrak p$ is good, i.e. non ramified and non dyadic,

\[ g(L, \mathfrak p) := [(s_1, r_1, d_1), \ldots, (s_t, r_t, d_t)]\]

where $d_i = 1$ if the determinant (resp. discriminant) of $L_i$ is a norm in $K_{\mathfrak p}^{\times}$, and $d_i = -1$ otherwise, and $r_i := \text{rank}(L_i)$ for all i;

  • if $\mathfrak p$ is bad,

\[ g(L, \mathfrak p) := [(s_1, r_1, d_1, n_1), \ldots, (s_t, r_t, d_t, n_t)]\]

where for all i, $n_i := \text{ord}_{\mathfrak p}(\mathfrak n(L_i))$

Note that we define the scale and the norm of the lattice $L_i$ ($1 \leq i \leq n$) defined over the extension of local fields $E_{\mathfrak P}/K_{\mathfrak p}$ similarly to the ones of $L$, by extending by continuity the sesquilinear form of the ambient space of $L$ to the completion. Regarding the determinant (resp. discriminant), it is defined as the determinant of the Gram matrix associated to a basis of $L_i$ relatively to the extension of the sesquilinear form (resp. $(-1)^{(m(m-1)/2}$ times the determinant, where $m$ is the rank of $L_i$).

We call any tuple in $g := g(L, \mathfrak p) = [g_1, \ldots, g_t]$ a Jordan block of $g$ since it corresponds to invariants of a Jordan block of the completion of the lattice $L$ at $\mathfrak p$. For any such block $g_i$, we call respectively $s_i, r_i, d_i, n_i$ the scale, the rank, the determinant class (resp. discriminant class) and the norm of $g_i$. Note that the norm is necessary only when the prime ideal is bad.

We say that two hermitian lattices $L$ and $L'$ over $E/K$ are in the same local genus at $\mathfrak p$ if $g(L, \mathfrak p) = g(L', \mathfrak p)$.

Creation of local genus symbols

There are two ways of creating a local genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension $E/K$, the prime ideal $\mathfrak p$ of $\mathcal O_K$, the Jordan blocks data and the type of the $d_i$'s (either determinant class :det or discriminant class :disc);
   genus(HermLat, E::NumField, p::NfOrdIdl, data::Vector; type::Symbol = :det,
                                                          check::Bool = false)
                                                             -> LocalGenusHerm
  • or by constructing the local genus symbol of the completion of a hermitian lattice $L$ over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$.
   genus(L::HermLat, p::NfOrdIdl) -> LocalGenusHerm

Examples

We will construct two examples for the rest of this section. Note that the prime chosen here is bad.


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det)Local genus symbol (scale, rank, det, norm) at <2, a>: (0, 1, +, 0)(2, 2, -, 1)
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> g2 = genus(L, p)Local genus symbol (scale, rank, det, norm) at <2, a>: (-2, 1, +, -1)(2, 2, +, 1)

Attributes

lengthMethod
length(g::LocalGenusHerm) -> Int

Given a local genus symbol g for hermitian lattices, return the number of Jordan blocks of g.

base_fieldMethod
base_field(g::LocalGenusHerm) -> NumField

Given a local genus symbol g for hermitian lattices over $E/K$, return E.

primeMethod
prime(g::LocalGenusHerm) -> NfOrdIdl

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return $\mathfrak p$.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> length(g1)2
julia> base_field(g1)Relative number field with defining polynomial t^2 - a over Number field over Rational Field with defining polynomial x^2 - 2
julia> prime(g1)<2, a> Norm: 2 Minimum: 2 basis_matrix [2 0; 0 1] two normal wrt: 2

Invariants

scaleMethod
scale(g::LocalGenusHerm, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime $\mathfrak p$ of $\mathcal O_K$, return the $\mathfrak P$-valuation of the scale of the ith Jordan block of g, where $\mathfrak P$ is a prime ideal of $\mathcal O_E$ lying over $\mathfrak p$.

scaleMethod
scale(g::LocalGenusHerm) -> NfOrdFracIdl

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime $\mathfrak p$ of $\mathcal O_K$, return the scale of the Jordan block of minimum $\mathfrak P$-valuation, where $\mathfrakP$ is a prime ideal of $\mathcal O_E$ lying over $\mathfrak p$.

scalesMethod
scales(g::LocalGenusHerm) -> Vector{Int}

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime $\mathfrak p$ of $\mathcal O_K$, return the $\mathfrak P$-valuation of the scales of the Jordan blocks of g, where $\mathfrak P$ is a prime ideal of $\mathcal O_E$ lying over $\mathfrak p$.

rankMethod
rank(g::LocalGenusHerm, i::Int) -> Int

Given a local genus symbol g for hermitian lattices, return the rank of the ith Jordan block of g.

rankMethod
rank(g::LocalGenusHerm) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return the rank of any hermitian lattice whose $\mathfrak p$-adic completion has local genus symbol g.

ranksMethod
ranks(g::LocalGenusHerm) -> Vector{Int}

Given a local genus symbol g for hermitian lattices, return the ranks of the Jordan blocks of g.

detMethod
det(g::LocalGenusHerm, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$, return the determinant of the ith Jordan block of g.

The returned value is $1$ or $-1$ depending on whether the determinant is a local norm in K.

detMethod
det(g::LocalGenusHerm) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return the determinant of a hermitian lattice whose $\mathfrak p$-adic completion has local genus symbol g.

The returned value is $1$ or $-1$ depending on whether the determinant is a local norm in K.

detsMethod
dets(g::LocalGenusHerm) -> Vector{Int}

Given a local genus symbol g for hermitian lattices over $E/K$, return the determinants of the Jordan blocks of g.

The returned values are $1$ or $-1$ depending on whether the respective determinants are are local norms in K.

discriminantMethod
discriminant(g::LocalGenusHerm, i::Int) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$, return the discriminant of the ith Jordan block of g.

The returned value is $1$ or $-1$ depending on whether the discriminant is a local norm in K.

discriminantMethod
discriminant(g::LocalGenusHerm) -> Int

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return the discriminant of a hermitian lattice whose $\mathfrak p$-adic completion has local genus symbol g.

The returned value is $1$ or $-1$ depending on whether the discriminant is a local norm in K.

normMethod
norm(g::LocalGenusHerm, i::Int) -> Int

Given a ramified dyadic local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return the $\mathfrak p$-valuation of the norm of the ith Jordan block of g.

normsMethod
norms(g::LocalGenusHerm) -> Vector{Int}

Given a ramified dyadic local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return the $\mathfrak p$-valuations of the norms of the Jordan blocks of g.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> g2 = genus(L, p);
julia> scales(g2)2-element Vector{Int64}: -2 2
julia> ranks(g2)2-element Vector{Int64}: 1 2
julia> dets(g2)2-element Vector{Int64}: 1 1
julia> norms(g2)2-element Vector{Int64}: -1 1
julia> rank(g2), det(g2), discriminant(g2)(3, 1, -1)

Predicates

is_ramifiedMethod
is_ramified(g::LocalGenusHerm) -> Bool

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return whether $\mathfrak p$ is ramified in $\mathcal O_E$.

is_splitMethod
is_split(g::LocalGenusHerm) -> Bool

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return whether $\mathfrak p$ is split in $\mathcal O_E$.

is_inertMethod
is_inert(g::LocalGenusHerm) -> Bool

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return whether $\mathfrak p$ is inert in $\mathcal O_E$.

is_dyadicMethod
is_dyadic(g::LocalGenusHerm) -> Bool

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return whether $\mathfrak p$ is dyadic.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> is_ramified(g1), is_split(g1), is_inert(g1), is_dyadic(g1)(true, false, false, true)

Local uniformizer

uniformizerMethod
uniformizer(g::LocalGenusHerm) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return a generator for the largest ideal of $\mathcal O_E$ containing $\mathfrak p$ and invariant under the action of the non-trivial involution of E.

Example


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> uniformizer(g1)-a

Determinant representatives

Let $g$ be a local genus symbol for hermitian lattices. Its determinant class, or the determinant class of its Jordan blocks, are given by $\pm 1$, depending on whether the determinants are local norms or not. It is possible to get a representative of this determinant class in terms of powers of the uniformizer of $g$.

det_representativeMethod
det_representative(g::LocalGenusHerm, i::Int) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over $E/K$, return a representative of the norm class of the determinant of the ith Jordan block of g in $K^{\times}$.

det_representativeMethod
det_representative(g::LocalGenusHerm) -> NumFieldElem

Given a local genus symbol g for hermitian lattices over $E/K$, return a representative of the norm class of the determinant of g in $K^{\times}$.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> det_representative(g1)-6
julia> det_representative(g1,2)-6

Gram matrices

gram_matrixMethod
gram_matrix(g::LocalGenusHerm, i::Int) -> MatElem

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return a Gram matrix M of the ith Jordan block of g, with coefficients in E. M is such that any hermitian lattice over $E/K$ with Gram matrix M satisfies that the local genus symbol of its completion at $\mathfrak p$ is equal to the ith Jordan block of g.

gram_matrixMethod
gram_matrix(g::LocalGenusHerm) -> MatElem

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return a Gram matrix M of g, with coefficients in E.M is such that any hermitian lattice over $E/K$ with Gram matrix M satisfies that the local genus symbol of its completion at $\mathfrak p$ is g.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> g2 = genus(L, p);
julia> gram_matrix(g2)[-3//2*a + 4 0 0] [ 0 a a] [ 0 a 4*a - 8]
julia> gram_matrix(g2,1)[-3//2*a + 4]


Global genus symbols

Let $L$ be a hermitian lattice over $E/K$. Let $P(L)$ be the set of all prime ideals of $\mathcal O_K$ which are bad (ramified or dyadic), which are dividing the scale of $L$ or which are dividing the volume of $L$. Let $S(E/K)$ be the set of real infinite places of $K$ which split into complex places in $E$. We define the global genus symbol $G(L)$ of $L$ to be the datum consisting of the local genus symbols of $L$ at each prime of $P(L)$ and the signatures (i.e. the negative index of inertia) of the Gram matrix of the rational span of $L$ at each place in $S(E/K)$.

Note that prime ideals in $P(L)$ which don't ramify correspond to those for which the corresponding completions of $L$ are not unimodular.

We say that two lattice $L$ and $L'$ over $E/K$ are in the same genus, if $G(L) = G(L')$.

Creation of global genus symbols

Similarly, there are two ways of constructing a global genus symbol for hermitian lattices:

  • either abstractly, by choosing the extension $E/K$, the set of local genus symbols S and the signatures signatures at the places in $S(E/K)$. Note that this requires the given invariants to satisfy the product formula for Hilbert symbols.
   genus(S::Vector{LocalGenusHerm}, signatures) -> GenusHerm

Here signatures can be a dictionary with keys the infinite places and values the corresponding signatures, or a collection of tuples of the type (::InfPlc, ::Int);

  • or by constructing the global genus symbol of a given hermitian lattice $L$.
   genus(L::HermLat) -> GenusHerm

Examples

As before, we will construct two different global genus symbols for hermitian lattices, which we will use for the rest of this section.


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> infp = infinite_places(E)3-element Vector{InfPlc{Hecke.NfRel{nf_elem}, Hecke.NumFieldEmbNfRel{Hecke.NumFieldEmbNfAbs, Hecke.NfRel{nf_elem}}}}: Infinite place corresponding to (Embedding corresponding to (Embedding corresponding to ≈ 1.41) and ≈ -1.19) Infinite place corresponding to (Embedding corresponding to (Embedding corresponding to ≈ 1.41) and ≈ 1.19) Infinite place corresponding to (Embedding corresponding to (Embedding corresponding to ≈ -1.41) and ≈ 0.00 + 1.19 * i)
julia> SEK = unique([r.base_field_place for r in infp if isreal(r.base_field_place) && !isreal(r)]);ERROR: type InfPlc has no field base_field_place
julia> length(SEK)ERROR: UndefVarError: SEK not defined
julia> G1 = genus([g1], [(SEK[1], 1)])ERROR: UndefVarError: SEK not defined
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> G2 = genus(L)Global genus symbol over Relative number field with defining polynomial t^2 - a over Number field over Rational Field with defining polynomial x^2 - 2 with local genus symbols <2, a> => (-2, 1, +, -1) (2, 2, +, 1) <7, a + 4> => (0, 1, +) (1, 2, +) and signatures Infinite place corresponding to (Embedding corresponding to ≈ -1.41) => 2

Attributes

base_fieldMethod
base_field(G::GenusHerm) -> NumField

Given a global genus symbol G for hermitian lattices over $E/K$, return E.

primesMethod
primes(G::GenusHerm) -> Vector{NfOrdIdl}

Given a global genus symbol G for hermitian lattices over $E/K$, return the list of prime ideals of $\mathcal O_K$ at which G has a local genus symbol.

signaturesMethod
signatures(G::GenusHerm) -> Dict{InfPlc, Int}

Given a global genus symbol G for hermitian lattices over $E/K$, return the signatures at the infinite places of K. For each real place, it is given by the negative index of inertia of the Gram matrix of the rational span of a hermitian lattice whose global genus symbol is G.

The output is given as a dictionary with keys the infinite places of K and value the corresponding signatures.

rankMethod
rank(G::GenusHerm) -> Int

Return the rank of any hermitian lattice with global genus symbol G.

is_integralMethod
is_integral(G::GenusHerm) -> Bool

Return whether G defines a genus of integral hermitian lattices.

local_symbolsMethod
local_symbols(G::GenusHerm) -> Vector{LocalGenusHerm}

Given a global genus symbol of hermitian lattices, return its associated local genus symbols.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> G2 = genus(L);
julia> base_field(G2)Relative number field with defining polynomial t^2 - a over Number field over Rational Field with defining polynomial x^2 - 2
julia> primes(G2)2-element Vector{NfOrdIdl}: <2, a> Norm: 2 Minimum: 2 basis_matrix [2 0; 0 1] two normal wrt: 2 <7, a + 4> Norm: 7 Minimum: 7 basis_matrix [7 0; 4 1] two normal wrt: 7
julia> signatures(G2)Dict{InfPlc{AnticNumberField, Hecke.NumFieldEmbNfAbs}, Int64} with 1 entry: Infinite place corresponding to (Embedding corresponding to ≈ -1.41) => 2
julia> rank(G2)3

Mass

Definition 4.2.1 [Kir16] Let $L$ be a hermitian lattice over $E/K$, and suppose that $L$ is definite. In particular, the automorphism group of $L$ is finite. Let $L_1, \ldots, L_n$ be a set of representatives of isometry classes in the genus of $L$. This means that if $L'$ is a lattice over $E/K$ in the genus of $L$ (i.e. they are in the same genus), then $L'$ is isometric to one of the $L_i$'s, and these representatives are pairwise non-isometric. Then we define the mass of the genus $G(L)$ of $L$ to be

\[ \textnormal{mass}(G(L)) := \sum_{i=1}^n\frac{1}{\#\textnormal{Aut}(L_i)}.\]

Note that since $L$ is definite, any lattice in the genus of $L$ is also definite, and the definition makes sense.

massMethod
mass(L::HermLat) -> fmpq

Given a definite hermitian lattice L, return the mass of its genus.

Example


julia> Qx, x = PolynomialRing(FlintQQ, "x");
julia> f = x^2 - 2;
julia> K, a = NumberField(f, "a", cached = false);
julia> Kt, t = PolynomialRing(K, "t");
julia> g = t^2 + 1;
julia> E, b = NumberField(g, "b", cached = false);
julia> D = matrix(E, 3, 3, [1, 0, 0, 0, 1, 0, 0, 0, 1]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [(-3*a + 7)*b + 3*a, (5//2*a - 1)*b - 3//2*a + 4, 0]), map(E, [(3004*a - 4197)*b - 3088*a + 4348, (-1047//2*a + 765)*b + 5313//2*a - 3780, (-a - 1)*b + 3*a - 1]), map(E, [(728381*a - 998259)*b + 3345554*a - 4653462, (-1507194*a + 2168244)*b - 1507194*a + 2168244, (-5917//2*a - 915)*b - 4331//2*a - 488])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> mass(L)1//1024


Representatives of a genus

representativeMethod
representative(g::LocalGenusHerm) -> HermLat

Given a local genus symbol g for hermitian lattices over $E/K$ at a prime ideal $\mathfrak p$ of $\mathcal O_K$, return a hermitian lattice over $E/K$ whose completion at $\mathfrak p$ admits g as local genus symbol.

inMethod
in(L::HermLat, g::LocalGenusHerm) -> Bool

Return whether g and the local genus symbol of the completion of the hermitian lattice L at prime(g) agree. Note that L being in g requires both L and g to be defined over the same extension $E/K$.

representativeMethod
representative(G::GenusHerm) -> HermLat

Given a global genus symbol G for hermitian lattices over $E/K$, return a hermitian lattice over $E/K$ which admits G as global genus symbol.

inMethod
in(L::HermLat, G::GenusHerm) -> Bool

Return whether G and the global genus symbol of the hermitian lattice L agree.

representativesMethod
representatives(G::GenusHerm) -> Vector{HermLat}

Given a global genus symbol G for hermitian lattices, return representatives for the isometry classes of hermitian lattices in G.

genus_representativesMethod
genus_representatives(L::HermLat; max = inf, use_auto = true,
                                             use_mass = false)
                                                      -> Vector{HermLat}

Return representatives for the isometry classes in the genus of the hermitian lattice L. At most max representatives are returned.

If L is definite, the use of the automorphism group of L is enabled by default. It can be disabled by use_auto = false. In the case where L is indefinite, the entry use_auto has no effect. The computation of the mass can be enabled by use_mass = true.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> infp = infinite_places(E);
julia> SEK = unique([r.base_field_place for r in infp if isreal(r.base_field_place) && !isreal(r)]);ERROR: type InfPlc has no field base_field_place
julia> G1 = genus([g1], [(SEK[1], 1)]);ERROR: UndefVarError: SEK not defined
julia> L1 = representative(g1)Hermitian lattice of rank 3 and degree 3 over Relative maximal order with pseudo-basis (1) * 1//1 * <1, 1>, (b) * 1//1 * <1, 1>
julia> L1 in g1true
julia> L2 = representative(G1)ERROR: UndefVarError: G1 not defined
julia> L2 in G1, L2 in g1ERROR: UndefVarError: L2 not defined
julia> length(genus_representatives(L1))1
julia> length(representatives(G1))ERROR: UndefVarError: G1 not defined

Sum of genera

orthogonal_sumMethod
orthogonal_sum(g1::LocalGenusHerm, g2::LocalGenusHerm) -> LocalGenusHerm

Given two local genus symbols g1 and g2 for hermitian lattices over $E/K$ at the same prime ideal $\mathfrak p$ of $\mathcal O_K$, return their orthogonal sum. It corresponds to the local genus symbol of the $\mathfrak p$-adic completion of the orthogonal sum of respective representatives of g1 and g2.

orthogonal_sumMethod
orthogonal_sum(G1::GenusHerm, G2::GenusHerm) -> GenusHerm

Given two global genus symbols G1 and G2 for hermitian lattices over $E/K$, return their orthogonal sum. It corresponds to the global genus symbol of the orthogonal sum of respective representatives of G1 and G2.

Examples


julia> Qx, x = QQ["x"];
julia> K, a = NumberField(x^2 - 2, "a");
julia> Kt, t = K["t"];
julia> E, b = NumberField(t^2 - a, "b");
julia> OK = maximal_order(K);
julia> p = prime_decomposition(OK, 2)[1][1];
julia> g1 = genus(HermLat, E, p, [(0, 1, 1, 0), (2, 2, -1, 1)], type = :det);
julia> infp = infinite_places(E);
julia> SEK = unique([r.base_field_place for r in infp if isreal(r.base_field_place) && !isreal(r)]);ERROR: type InfPlc has no field base_field_place
julia> G1 = genus([g1], [(SEK[1], 1)]);ERROR: UndefVarError: SEK not defined
julia> D = matrix(E, 3, 3, [5//2*a - 4, 0, 0, 0, a, a, 0, a, -4*a + 8]);
julia> gens = Vector{Hecke.NfRelElem{nf_elem}}[map(E, [1, 0, 0]), map(E, [a, 0, 0]), map(E, [b, 0, 0]), map(E, [a*b, 0, 0]), map(E, [0, 1, 0]), map(E, [0, a, 0]), map(E, [0, b, 0]), map(E, [0, a*b, 0]), map(E, [0, 0, 1]), map(E, [0, 0, a]), map(E, [0, 0, b]), map(E, [0, 0, a*b])];
julia> L = hermitian_lattice(E, gens, gram = D);
julia> g2 = genus(L, p);
julia> G2 = genus(L);
julia> orthogonal_sum(g1, g2)Local genus symbol (scale, rank, det, norm) at <2, a>: (-2, 1, +, -1)(0, 1, +, 0)(2, 4, -, 1)
julia> orthogonal_sum(G1, G2)ERROR: UndefVarError: G1 not defined

Enumeration of genera

local_genera_hermitianMethod
local_genera_hermitian(E::NumField, p::NfOrdIdl, rank::Int,
                       det_val::Int, min_scale::Int, max_scale::Int)
                                                  -> Vector{LocalGenusHerm}

Return all local genus symbols for hermitian lattices over the algebra E, with base field $K$, at the prime idealp of $\mathcal O_K$. Each of them has rank equal to rank, scale $\mathfrak P$-valuations bounded between min_scale and max_scale and determinant p-valuations equal to det_val, where $\mathfrak P$ is a prime ideal of $\mathcal O_E$ lying above p.

genera_hermitianMethod
genera_hermitian(E::NumField, rank::Int,
                              signatures::Dict{InfPlc, Int},
                              determinant::Union{Hecke.NfRelOrdIdl, Hecke.NfRelOrdFracIdl};
                              min_scale::Union{Hecke.NfRelOrdIdl, Hecke.NfRelOrdFracIdl} = is_integral(determinant) ? inv(1*order(determinant)) : determinant,
                              max_scale::Union{Hecke.NfRelOrdIdl, Hecke.NfRelOrdFracIdl} = is_integral(determinant) ? determinant : inv(1*order(determinant)))
                                                                                                             -> Vector{GenusHerm}

Return all global genus symbols for hermitian lattices over the algebraE with rank rank, signatures given by signatures, scale bounded by max_scale and determinant class equal to determinant.

If max_scale == nothing, it is set to be equal to determinant.

Examples


julia> K, a = CyclotomicRealSubfield(8, "a");
julia> Kt, t = K["t"];
julia> E, b = number_field(t^2 - a * t + 1);
julia> p = prime_decomposition(maximal_order(K), 2)[1][1];
julia> local_genera_hermitian(E, p, 4, 2, 4)ERROR: MethodError: no method matching local_genera_hermitian(::Hecke.NfRel{nf_elem}, ::NfOrdIdl, ::Int64, ::Int64, ::Int64) Closest candidates are: local_genera_hermitian(::Any, ::Any, ::Int64, ::Int64, ::Int64, !Matched::Int64) at /home/runner/.julia/packages/Hecke/IGeky/src/QuadForm/Herm/Genus.jl:1595
julia> infp = infinite_places(E);
julia> SEK = unique([r.base_field_place for r in infp if isreal(r.base_field_place) && !isreal(r)]);ERROR: type InfPlc has no field base_field_place
julia> genera_hermitian(E, 3, Dict(SEK[1] => 1, SEK[2] => 1), 30 * maximal_order(E))ERROR: UndefVarError: SEK not defined

Rescaling

rescaleMethod
rescale(g::LocalGenusHerm, a::Union{FieldElem, RationalUnion})
                                                          -> LocalGenusHerm

Given a local genus symbol G of hermitian lattices and an element a lying in the base field E of g, return the local genus symbol at the prime ideal p associated to g of any representative of g rescaled by a.

rescaleMethod
rescale(G::GenusHerm, a::Union{FieldElem, RationalUnion}) -> GenusHerm

Given a global genus symbol G of hermitian lattices and an element a lying in the base field E of G, return the global genus symbol of any representative of G rescaled by a.