Basics
Creation
elliptic_curve
— Functionelliptic_curve([K::Field], x::Vector; check::Bool = true) -> EllipticCurve
Construct an elliptic curve with Weierstrass equation specified by the coefficients in x
, which must have either length 2 or 5.
Per default, it is checked whether the discriminant is non-zero. This can be disabled by setting check = false
.
Examples
julia> elliptic_curve(QQ, [1, 2, 3, 4, 5])
Elliptic curve with equation
y^2 + x*y + 3*y = x^3 + 2*x^2 + 4*x + 5
julia> elliptic_curve(GF(3), [1, 1])
Elliptic curve with equation
y^2 = x^3 + x + 1
elliptic_curve_from_j_invariant
— Functionelliptic_curve_from_j_invariant(j::FieldElem) -> EllipticCurve
Return an elliptic curve with the given $j$-invariant.
Examples
julia> K = GF(3)
Prime field of characteristic 3
julia> elliptic_curve_from_j_invariant(K(2))
Elliptic curve with equation
y^2 + x*y = x^3 + 1
Basic properties
base_field
— Methodbase_field(E::EllipticCurve) -> Field
Return the base field over which E
is defined.
base_field(C::HypellCrv) -> Field
Return the base field over which C
is defined.
base_change
— Methodbase_change(K::Field, E::EllipticCurve) -> EllipticCurve
Return the base change of the elliptic curve $E$ over $K$ if coercion is possible.
base_change
— Methodbase_change(f, E::EllipticCurve) -> EllipticCurve
Return the base change of the elliptic curve $E$ using the map $f$.
coefficients
— Methodcoefficients(E::EllipticCurve{T}) -> Tuple{T, T, T, T, T}
Return the Weierstrass coefficients of $E$ as a tuple (a1, a2, a3, a4, a6) such that $E$ is given by y^2 + a1xy + a3y = x^3 + a2x^2 + a4x + a6.
a_invariants
— Methoda_invariants(E::EllipticCurve{T}) -> Tuple{T, T, T, T, T}
Return the Weierstrass coefficients of $E$ as a tuple $(a_1, a_2, a_3, a_4, a_6)$ such that $E$ is given by $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$.
b_invariants
— Methodb_invariants(E::EllipticCurve{T}) -> Tuple{T, T, T, T}
Return the b-invariants of $E$ as a tuple $(b_2, b_4, b_6, b_8)$.
c_invariants
— Methodc_invariants(E::EllipticCurve{T}) -> Tuple{T, T}
Return the c-invariants of $E as a tuple $(c_4, c_6)$.
discriminant
— Methoddiscriminant(E::EllipticCurve) -> FieldElem
Return the discriminant of $E$.
discriminant(C::HypellCrv{T}) -> T
Compute the discriminant of $C$.
discriminant(O::AlgssRelOrd)
Returns the discriminant of $O$.
j_invariant
— Methodj_invariant(E::EllipticCurve) -> FieldElem
Compute the j-invariant of $E$.
equation
— Methodequation([R::MPolyRing,] E::EllipticCurve) -> MPolyRingElem
Return the equation defining the elliptic curve $E$ as a bivariate polynomial. If the polynomial ring $R$ is specified, it must by a bivariate polynomial ring.
Examples
julia> E = elliptic_curve(QQ, [1, 2, 3, 4, 5]);
julia> equation(E)
-x^3 - 2*x^2 + x*y - 4*x + y^2 + 3*y - 5
hyperelliptic_polynomials
— Methodhyperelliptic_polynomials([R::PolyRing,] E::EllipticCurve) -> PolyRingElem, PolyRingElem
Return univariate polynomials $f, h$ such that $E$ is given by $y^2 + h*y = f$.
Examples
julia> E = elliptic_curve(QQ, [1, 2, 3, 4, 5]);
julia> hyperelliptic_polynomials(E)
(x^3 + 2*x^2 + 4*x + 5, x + 3)
Points
(E::EllipticCurve)(coords::Vector; check::Bool = true)
Return the point $P$ of $E$ with coordinates specified by coords
, which can be either affine coordinates (length(coords) == 2
) or projective coordinates (length(coords) == 3
).
Per default, it is checked whether the point lies on $E$. This can be disabled by setting check = false
.
Examples
julia> E = elliptic_curve(QQ, [1, 2]);
julia> E([1, -2])
Point (1 : -2 : 1) of Elliptic curve with equation
y^2 = x^3 + x + 2
julia> E([2, -4, 2])
Point (1 : -2 : 1) of Elliptic curve with equation
y^2 = x^3 + x + 2
infinity
— Methodinfinity(E::EllipticCurve) -> EllipticCurvePoint
Return the point at infinity with project coordinates $[0 : 1 : 0]$.
parent
— Methodparent(P::EllipticCurvePoint) -> EllipticCurve
Return the elliptic curve on which $P$ lies.
Examples
julia> E = elliptic_curve(QQ, [1, 2]);
julia> P = E([1, -2]);
julia> E == parent(P)
true
is_on_curve
— Methodis_on_curve(E::EllipticCurve, coords::Vector) -> Bool
Return true if coords
defines a point on $E$ and false otherwise. The array coords
must have length 2.
Examples
julia> E = elliptic_curve(QQ, [1, 2]);
julia> is_on_curve(E, [1, -2])
true
julia> is_on_curve(E, [1, -1])
false
+
— Method+(P::EllipticCurvePoint, Q::EllipticCurvePoint) -> EllipticCurvePoint
Add two points on an elliptic curve.
Examples
julia> E = elliptic_curve(QQ, [1, 2]);
julia> P = E([1, -2]);
julia> P + P
Point (-1 : 0 : 1) of Elliptic curve with equation
y^2 = x^3 + x + 2
division_points
— Methoddivision_points(P::EllipticCurvePoint, m::Int) -> EllipticCurvePoint
Compute the set of points $Q$ defined over the base field such that $mQ = P$. Returns the empty list if no such points exist.
Examples
julia> E = elliptic_curve(QQ, [1, 2]);
julia> division_points(infinity(E), 2)
2-element Vector{EllipticCurvePoint{QQFieldElem}}:
Point (0 : 1 : 0) of Elliptic curve with equation
y^2 = x^3 + x + 2
Point (-1 : 0 : 1) of Elliptic curve with equation
y^2 = x^3 + x + 2