Element operations
Creation
Elements can also be created by specifying the coordinates with respect to the basis of the number field:
(L::number_field)(c::Vector{NumFieldElem}) -> NumFieldElemGiven a number field $L/K$ of degree $d$ and a vector c length $d$, this constructs the element a with coordinates(a) == c.
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^2 - 2, "a");
julia> K([1, 2])
2*a + 1
julia> L, b = radical_extension(3, a, "b")
(Relative number field of degree 3 over K, b)
julia> L([a, 1, 1//2])
1//2*b^2 + b + aquadratic_defect — Method
quadratic_defect(a::Union{NumFieldElem,Rational,QQFieldElem}, p) -> Union{Inf, PosInf}Returns the valuation of the quadratic defect of the element $a$ at $p$, which can either be prime object or an infinite place of the parent of $a$.
sourcehilbert_symbol — Method
hilbert_symbol(a::NumFieldElem, b::NumFieldElem, p::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> IntReturns the local Hilbert symbol $(a,b)_p$.
sourcerepresentation_matrix — Method
representation_matrix(a::NumFieldElem) -> MatElemReturns the representation matrix of $a$, that is, the matrix representing multiplication with $a$ with respect to the canonical basis of the parent of $a$.
sourcebasis_matrix — Method
basis_matrix(v::Vector{NumFieldElem}) -> MatGiven a vector $v$ of $n$ elements of a number field $K$ of degree $d$, this function returns an $n \times d$ matrix with entries in the base field of $K$, where row $i$ contains the coefficients of $v[i]$ with respect of the canonical basis of $K$.
sourcecoefficients — Method
coefficients(a::SimpleNumFieldElem, i::Int) -> Vector{FieldElem}Given a number field element a of a simple number field extension L/K, this function returns the coefficients of a, when expanded in the canonical power basis of L.
coordinates — Method
coordinates(x::NumFieldElem{T}) -> Vector{T}Given an element $x$ in a number field $K$, this function returns the coordinates of $x$ with respect to the basis of $K$ (the output of the 'basis' function).
sourceabsolute_coordinates — Method
absolute_coordinates(x::NumFieldElem{T}) -> Vector{T}Given an element $x$ in a number field $K$, this function returns the coordinates of $x$ with respect to the basis of $K$ over the rationals (the output of the absolute_basis function).
torsion_unit_order — Method
torsion_unit_order(x::AbsSimpleNumFieldElem, n::Int)Given a torsion unit $x$ together with a multiple $n$ of its order, compute the order of $x$, that is, the smallest $k \in \mathbb Z_{\geq 1}$ such that $x^k = 1$.
It is not checked whether $x$ is a torsion unit.
sourceabsolute_tr — Method
absolute_tr(a::NumFieldElem) -> QQFieldElemGiven a number field element $a$, returns the absolute trace of $a$.
sourcealgebraic_split — Method
algebraic_split(a::AbsSimpleNumFieldElem) -> AbsSimpleNumFieldElem, AbsSimpleNumFieldElemWrites the input as a quotient of two "small" algebraic integers.
sourceConjugates
conjugates — Method
conjugates(x::AbsSimpleNumFieldElem, C::AcbField) -> Vector{AcbFieldElem}Compute the conjugates of $x$ as elements of type AcbFieldElem. Recall that we order the complex conjugates $\sigma_{r+1}(x),...,\sigma_{r+2s}(x)$ such that $\sigma_{i}(x) = \overline{\sigma_{i + s}(x)}$ for $r + 1 \leq i \leq r + s$.
Let p be the precision of C, then every entry $y$ of the vector returned satisfies radius(real(y)) < 2^-p and radius(imag(y)) < 2^-p respectively.
conjugates — Method
conjugates(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}Compute the conjugates of $x$ as elements of type AcbFieldElem. Recall that we order the complex conjugates $\sigma_{r+1}(x),...,\sigma_{r+2s}(x)$ such that $\sigma_{i}(x) = \overline{\sigma_{i + s}(x)}$ for $r + 1 \leq i \leq r + s$.
Every entry $y$ of the vector returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol respectively.
conjugates_log — Method
conjugates_arb_log(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}Returns the elements $(\log(\lvert \sigma_1(x) \rvert),\dotsc,\log(\lvert\sigma_r(x) \rvert), \dotsc,2\log(\lvert \sigma_{r+1}(x) \rvert),\dotsc, 2\log(\lvert \sigma_{r+s}(x)\rvert))$ as elements of type ArbFieldElem with radius less then 2^-abs_tol.
conjugates_real — Method
conjugates_arb_real(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}Compute the real conjugates of $x$ as elements of type ArbFieldElem.
Every entry $y$ of the array returned satisfies radius(y) < 2^-abs_tol.
conjugates_complex — Method
conjugates_complex(x::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{AcbFieldElem}Compute the complex conjugates of $x$ as elements of type AcbFieldElem. Recall that we order the complex conjugates $\sigma_{r+1}(x),...,\sigma_{r+2s}(x)$ such that $\sigma_{i}(x) = \overline{\sigma_{i + s}(x)}$ for $r + 1 \leq i \leq r + s$.
Every entry $y$ of the array returned satisfies radius(real(y)) < 2^-abs_tol and radius(imag(y)) < 2^-abs_tol.
conjugates_arb_log_normalise — Method
conjugates_arb_log_normalise(x::AbsSimpleNumFieldElem, p::Int = 10)
conjugates_arb_log_normalise(x::FacElem{AbsSimpleNumFieldElem, AbsSimpleNumField}, p::Int = 10)The "normalised" logarithms, i.e. the array $c_i\log |x^{(i)}| - 1/n\log|N(x)|$, so the (weighted) sum adds up to zero.
sourceminkowski_map — Method
minkowski_map(a::AbsSimpleNumFieldElem, abs_tol::Int) -> Vector{ArbFieldElem}Returns the image of $a$ under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem with radius less then 2^(-abs_tol).
Predicates
is_integral — Method
is_integral(a::NumFieldElem) -> BoolReturns whether $a$ is integral, that is, whether the minimal polynomial of $a$ has integral coefficients.
sourceis_torsion_unit — Method
is_torsion_unit(x::AbsSimpleNumFieldElem, checkisunit::Bool = false) -> BoolReturns whether $x$ is a torsion unit, that is, whether there exists $n$ such that $x^n = 1$.
If checkisunit is true, it is first checked whether $x$ is a unit of the maximal order of the number field $x$ is lying in.
is_local_norm — Method
is_local_norm(L::NumField, a::NumFieldElem, P)Given a number field $L/K$, an element $a \in K$ and a prime ideal $P$ of $K$, returns whether $a$ is a local norm at $P$.
The number field $L/K$ must be a simple extension of degree 2.
sourceis_norm_divisible — Method
is_norm_divisible(a::AbsSimpleNumFieldElem, n::ZZRingElem) -> BoolChecks if the norm of $a$ is divisible by $n$, assuming that the norm of $a$ is an integer.
sourceInvariants
absolute_norm — Method
absolute_norm(a::NumFieldElem) -> QQFieldElemGiven a number field element $a$, returns the absolute norm of $a$.
sourceabsolute_minpoly — Method
absolute_minpoly(a::NumFieldElem) -> PolyRingElemGiven a number field element $a$ of a number field $K$, this function returns the minimal polynomial of $a$ over the rationals $\mathbf{Q}$.
sourceabsolute_charpoly — Method
absolute_charpoly(a::NumFieldElem) -> PolyRingElemGiven a number field element $a$ of a number field $K$, this function returns the characteristic polynomial of $a$ over the rationals $\mathbf{Q}$.
source