Integer Lattices

An integer lattice $L$ is a finitely generated $\mathbb{Z}$-submodule of a quadratic vector space $V = \mathbb{Q}^n$ over the rational numbers. Integer lattices are also known as quadratic forms over the integers. We will refer to them as $\mathbb{Z}$-lattices.

A $\mathbb{Z}$-lattice $L$ has the type ZZLat. It is given in terms of its ambient quadratic space $V$ together with a basis matrix $B$ whose rows span $L$, i.e. $L = \mathbb{Z}^r B$ where $r$ is the ($\mathbb{Z}$-module) rank of $L$.

To access $V$ and $B$ see ambient_space(L::ZZLat) and basis_matrix(L::ZZLat).

Creation of integer lattices

From a gram matrix

integer_latticeMethod
integer_lattice([B::MatElem]; gram) -> ZZLat

Return the Z-lattice with basis matrix $B$ inside the quadratic space with Gram matrix gram.

If the keyword gram is not specified, the Gram matrix is the identity matrix. If $B$ is not specified, the basis matrix is the identity matrix.

Examples

julia> L = integer_lattice(matrix(QQ, 2, 2, [1//2, 0, 0, 2]));

julia> gram_matrix(L) == matrix(QQ, 2, 2, [1//4, 0, 0, 4])
true

julia> L = integer_lattice(gram = matrix(ZZ, [2 -1; -1 2]));

julia> gram_matrix(L) == matrix(ZZ, [2 -1; -1 2])
true
source

In a quadratic space

latticeMethod
lattice(V::AbstractSpace, basis::MatElem ; check::Bool = true) -> AbstractLat

Given an ambient space V and a matrix basis, return the lattice spanned by the rows of basis inside V. If V is hermitian (resp. quadratic) then the output is a hermitian (resp. quadratic) lattice.

By default, basis is checked to be of full rank. This test can be disabled by setting check to false.

source

Special lattices

root_latticeMethod
root_lattice(R::Symbol, n::Int) -> ZZLat

Return the root lattice of type R given by :A, :D or :E with parameter n.

The type :I with parameter n = 1 is also allowed and denotes the odd unimodular lattice of rank 1.

source
hyperbolic_plane_latticeMethod
hyperbolic_plane_lattice(n::RationalUnion = 1) -> ZZLat

Return the hyperbolic plane with intersection form of scale n, that is, the unique (up to isometry) even unimodular hyperbolic $\mathbb Z$-lattice of rank 2, rescaled by n.

Examples

julia> L = hyperbolic_plane_lattice(6);

julia> gram_matrix(L)
[0   6]
[6   0]

julia> L = hyperbolic_plane_lattice(ZZ(-13));

julia> gram_matrix(L)
[  0   -13]
[-13     0]
source
integer_latticeMethod
integer_lattice(S::Symbol, n::RationalUnion = 1) -> ZZlat

Given S = :H or S = :U, return a $\mathbb Z$-lattice admitting $n*J_2$ as Gram matrix in some basis, where $J_2$ is the 2-by-2 matrix with 0's on the main diagonal and 1's elsewhere.

source
leech_latticeFunction
leech_lattice() -> ZZLat

Return the Leech lattice.

source
leech_lattice(niemeier_lattice::ZZLat) -> ZZLat, QQMatrix, Int

Return a triple L, v, h where L is the Leech lattice.

L is an h-neighbor of the Niemeier lattice N with respect to v. This means that L / L ∩ N ≅ ℤ / h ℤ. Here h is the Coxeter number of the Niemeier lattice.

This implements the 23 holy constructions of the Leech lattice in [CS99].

Examples

julia> R = integer_lattice(gram=2 * identity_matrix(ZZ, 24));

julia> N = maximal_even_lattice(R) # Some Niemeier lattice
Integer lattice of rank 24 and degree 24
with gram matrix
[2   1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   1   0   1   1   0   0   0   0]
[1   2   1   1   0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   1   0   0   0   0]
[1   1   2   1   0   0   0   0   0   0   0   0   0   0   0   0   1   1   1   0   0   0   0   0]
[1   1   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
[0   0   0   0   2   1   1   1   0   0   0   0   1   0   1   1   0   0   0   0   0   0   0   0]
[0   0   0   0   1   2   1   1   0   0   0   0   1   1   0   1   0   0   0   0   0   0   0   0]
[0   0   0   0   1   1   2   1   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0]
[0   0   0   0   1   1   1   2   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]
[0   0   0   0   0   0   0   0   2   1   1   1   0   0   0   0   0   0   0   0   1   1   1   0]
[0   0   0   0   0   0   0   0   1   2   1   1   0   0   0   0   0   0   0   0   1   0   1   1]
[0   0   0   0   0   0   0   0   1   1   2   1   0   0   0   0   0   0   0   0   1   1   0   1]
[0   0   0   0   0   0   0   0   1   1   1   2   0   0   0   0   0   0   0   0   0   0   0   0]
[0   0   0   0   1   1   1   0   0   0   0   0   2   1   1   1   0   0   0   0   0   0   0   0]
[0   0   0   0   0   1   1   0   0   0   0   0   1   2   0   0   0   0   0   0   0   0   0   0]
[0   0   0   0   1   0   1   0   0   0   0   0   1   0   2   0   0   0   0   0   0   0   0   0]
[0   0   0   0   1   1   0   0   0   0   0   0   1   0   0   2   0   0   0   0   0   0   0   0]
[1   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   2   1   1   1   0   0   0   0]
[0   1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   2   0   0   0   0   0   0]
[1   0   1   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   2   0   0   0   0   0]
[1   1   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   2   0   0   0   0]
[0   0   0   0   0   0   0   0   1   1   1   0   0   0   0   0   0   0   0   0   2   1   1   1]
[0   0   0   0   0   0   0   0   1   0   1   0   0   0   0   0   0   0   0   0   1   2   0   0]
[0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   0   1   0   2   0]
[0   0   0   0   0   0   0   0   0   1   1   0   0   0   0   0   0   0   0   0   1   0   0   2]

julia> minimum(N)
2

julia> det(N)
1

julia> L, v, h = leech_lattice(N);

julia> minimum(L)
4

julia> det(L)
1

julia> h == index(L, intersect(L, N))
true

We illustrate how the Leech lattice is constructed from N, h and v.

julia> Zmodh, _ = residue_ring(ZZ, h);

julia> V = ambient_space(N);

julia> vG = map_entries(x->Zmodh(ZZ(x)), inner_product(V, v, basis_matrix(N)));

julia> LN = transpose(lift(Hecke.kernel(vG; side = :right)))*basis_matrix(N); # vectors whose inner product with `v` is divisible by `h`.

julia> lattice(V, LN) == intersect(L, N)
true

julia> gensL = vcat(LN, 1//h * v);

julia> lattice(V, gensL, isbasis=false) == L
true
source
k3_latticeFunction
k3_lattice()

Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki form associated to a K3 surface.

Examples

julia> L = k3_lattice();

julia> is_unimodular(L)
true

julia> signature_tuple(L)
(3, 0, 19)
source
mukai_latticeMethod
mukai_lattice(S::Symbol = :K3; extended::Bool = false)

Return the (extended) Mukai lattice.

If S == :K3, it returns the (extended) Mukai lattice associated to hyperkaehler manifolds which are deformation equivalent to a moduli space of stable sheaves on a K3 surface.

If S == :Ab, it returns the (extended) Mukai lattice associated to hyperkaehler manifolds which are deformation equivalent to a moduli space of stable sheaves on an abelian surface.

Examples

julia> L = mukai_lattice();

julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 20)
Local symbol:
  Local genus symbol at 2: 1^24

julia> L = mukai_lattice(; extended = true);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 21)
Local symbol:
  Local genus symbol at 2: 1^26

julia> L = mukai_lattice(:Ab);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (4, 0, 4)
Local symbol:
  Local genus symbol at 2: 1^8

julia> L = mukai_lattice(:Ab; extended = true);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (5, 0, 5)
Local symbol:
  Local genus symbol at 2: 1^10
source
hyperkaehler_latticeMethod
hyperkaehler_lattice(S::Symbol; n::Int = 2)

Return the integer lattice corresponding to the Beauville-Bogomolov-Fujiki form on a hyperkaehler manifold whose deformation type is determined by S and n.

  • If S == :K3 or S == :Kum, then n must be an integer bigger than 2;
  • If S == :OG6 or S == :OG10, the value of n has no effect.

Examples

julia> L = hyperkaehler_lattice(:Kum; n = 3)
Integer lattice of rank 7 and degree 7
with gram matrix
[0   1   0   0   0   0    0]
[1   0   0   0   0   0    0]
[0   0   0   1   0   0    0]
[0   0   1   0   0   0    0]
[0   0   0   0   0   1    0]
[0   0   0   0   1   0    0]
[0   0   0   0   0   0   -8]

julia> L = hyperkaehler_lattice(:OG6)
Integer lattice of rank 8 and degree 8
with gram matrix
[0   1   0   0   0   0    0    0]
[1   0   0   0   0   0    0    0]
[0   0   0   1   0   0    0    0]
[0   0   1   0   0   0    0    0]
[0   0   0   0   0   1    0    0]
[0   0   0   0   1   0    0    0]
[0   0   0   0   0   0   -2    0]
[0   0   0   0   0   0    0   -2]

julia> L = hyperkaehler_lattice(:OG10);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 21)
Local symbols:
  Local genus symbol at 2: 1^-24
  Local genus symbol at 3: 1^-23 3^1

julia> L = hyperkaehler_lattice(:K3; n = 3);

julia> genus(L)
Genus symbol for integer lattices
Signatures: (3, 0, 20)
Local symbol:
  Local genus symbol at 2: 1^22 4^1_7
source

From a genus

Integer lattices can be created as representatives of a genus. See (representative(L::ZZGenus))

Rescaling the Quadratic Form

rescaleMethod
rescale(L::ZZLat, r::RationalUnion) -> ZZLat

Return the lattice L in the quadratic space with form r \Phi.

Examples

This can be useful to apply methods intended for positive definite lattices.

julia> L = integer_lattice(gram=ZZ[-1 0; 0 -1])
Integer lattice of rank 2 and degree 2
with gram matrix
[-1    0]
[ 0   -1]

julia> shortest_vectors(rescale(L, -1))
2-element Vector{Vector{ZZRingElem}}:
 [0, 1]
 [1, 0]
source

Attributes

ambient_spaceMethod
ambient_space(L::AbstractLat) -> AbstractSpace

Return the ambient space of the lattice L. If the ambient space is not known, an error is raised.

source
basis_matrixMethod
basis_matrix(L::ZZLat) -> QQMatrix

Return the basis matrix $B$ of the integer lattice $L$.

The lattice is given by the row span of $B$ seen inside of the ambient quadratic space of $L$.

source
gram_matrixMethod
gram_matrix(L::ZZLat) -> QQMatrix

Return the gram matrix of $L$.

Examples

julia> L = integer_lattice(matrix(ZZ, [2 0; -1 2]));

julia> gram_matrix(L)
[ 4   -2]
[-2    5]
source
rational_spanMethod
rational_span(L::ZZLat) -> QuadSpace

Return the rational span of $L$, which is the quadratic space with Gram matrix equal to gram_matrix(L).

Examples

julia> L = integer_lattice(matrix(ZZ, [2 0; -1 2]));

julia> rational_span(L)
Quadratic space of dimension 2
  over rational field
with gram matrix
[ 4   -2]
[-2    5]
source

Invariants

rankMethod
rank(L::AbstractLat) -> Int

Return the rank of the underlying module of the lattice L.

source
detMethod
det(L::ZZLat) -> QQFieldElem

Return the determinant of the gram matrix of L.

source
scaleMethod
scale(L::ZZLat) -> QQFieldElem

Return the scale of L.

The scale of L is defined as the positive generator of the $\mathbb Z$-ideal generated by $\{\Phi(x, y) : x, y \in L\}$.

source
normMethod
norm(L::ZZLat) -> QQFieldElem

Return the norm of L.

The norm of L is defined as the positive generator of the $\mathbb Z$- ideal generated by $\{\Phi(x,x) : x \in L\}$.

source
isevenMethod
iseven(L::ZZLat) -> Bool

Return whether L is even.

An integer lattice L in the rational quadratic space $(V,\Phi)$ is called even if $\Phi(x,x) \in 2\mathbb{Z}$ for all $x in L$.

source
is_integralMethod
is_integral(L::AbstractLat) -> Bool

Return whether the lattice L is integral.

source
is_primary_with_primeMethod
is_primary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a $\mathbb Z$-lattice L, return whether L is primary, that is whether L is integral and its discriminant group (see discriminant_group) is a p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not primary, the second return value is -1 by default.

source
is_primaryMethod
is_primary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral $\mathbb Z$-lattice L and a prime number p, return whether L is p-primary, that is whether its discriminant group (see discriminant_group) is a p-group.

source
is_elementary_with_primeMethod
is_elementary_with_prime(L::ZZLat) -> Bool, ZZRingElem

Given a $\mathbb Z$-lattice L, return whether L is elementary, that is whether L is integral and its discriminant group (see discriminant_group) is an elemenentary p-group for some prime number p. In case it is, p is also returned as second output.

Note that for unimodular lattices, this function returns (true, 1). If the lattice is not elementary, the second return value is -1 by default.

source
is_elementaryMethod
is_elementary(L::ZZLat, p::Union{Integer, ZZRingElem}) -> Bool

Given an integral $\mathbb Z$-lattice L and a prime number p, return whether L is p-elementary, that is whether its discriminant group (see discriminant_group) is an elementary p-group.

source

The Genus

For an integral lattice The genus of an integer lattice collects its local invariants. genus(::ZZLat)

massMethod
mass(L::ZZLat) -> QQFieldElem

Return the mass of the genus of L.

source
genus_representativesMethod
genus_representatives(L::ZZLat) -> Vector{ZZLat}

Return representatives for the isometry classes in the genus of L.

source

Real invariants

signature_tupleMethod
signature_tuple(L::ZZLat) -> Tuple{Int,Int,Int}

Return the number of (positive, zero, negative) inertia of L.

source
is_positive_definiteMethod
is_positive_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is positive definite.

source
is_negative_definiteMethod
is_negative_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is negative definite.

source
is_definiteMethod
is_definite(L::AbstractLat) -> Bool

Return whether the rational span of the lattice L is definite.

source

Isometries

automorphism_group_generatorsMethod
automorphism_group_generators(E::EllipticCurve) -> Vector{EllCrvIso}

Return generators of the automorphism group of $E$.

source
automorphism_group_generators(L::AbstractLat; ambient_representation::Bool = true,
                                              depth::Int = -1, bacher_depth::Int = 0)
                                                      -> Vector{MatElem}

Given a definite lattice L, return generators for the automorphism group of L. If ambient_representation == true (the default), the transformations are represented with respect to the ambient space of L. Otherwise, the transformations are represented with respect to the (pseudo-)basis of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source
automorphism_group_orderMethod
automorphism_group_order(L::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Int

Given a definite lattice L, return the order of the automorphism group of L.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source
is_isometricMethod
is_isometric(L::AbstractLat, M::AbstractLat; depth::Int = -1, bacher_depth::Int = 0) -> Bool

Return whether the lattices L and M are isometric.

Setting the parameters depth and bacher_depth to a positive value may improve performance. If set to -1 (default), the used value of depth is chosen heuristically depending on the rank of L. By default, bacher_depth is set to 0.

source
is_locally_isometricMethod
is_locally_isometric(L::ZZLat, M::ZZLat, p::Int) -> Bool

Return whether L and M are isometric over the p-adic integers.

i.e. whether $L \otimes \mathbb{Z}_p \cong M\otimes \mathbb{Z}_p$.

source

Root lattices

root_lattice_recognitionMethod
root_lattice_recognition(L::ZZLat)

Return the ADE type of the root sublattice of L.

The root sublattice is the lattice spanned by the vectors of squared length $1$ and $2$. The odd lattice of rank 1 and determinant $1$ is denoted by (:I, 1).

Input:

L – a definite and integral $\mathbb{Z}$-lattice.

Output:

Two lists, the first one containing the ADE types and the second one the irreducible root sublattices.

For more recognizable gram matrices use root_lattice_recognition_fundamental.

Examples

julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
                            0 16 8 12 2 12 6 10;
                            0  8 8  6 2  8 4  5;
                            0 12 6 10 2  9 5  8;
                            3  2 2  2 4  2 4  2;
                            0 12 8  9 2 12 6  9;
                            3  6 4  5 4  6 6  5;
                            0 10 5  8 2  9 5  8])
Integer lattice of rank 8 and degree 8
with gram matrix
[4    0   0    0   3    0   3    0]
[0   16   8   12   2   12   6   10]
[0    8   8    6   2    8   4    5]
[0   12   6   10   2    9   5    8]
[3    2   2    2   4    2   4    2]
[0   12   8    9   2   12   6    9]
[3    6   4    5   4    6   6    5]
[0   10   5    8   2    9   5    8]

julia> R = root_lattice_recognition(L)
([(:A, 1), (:D, 6)], ZZLat[Integer lattice of rank 1 and degree 8, Integer lattice of rank 6 and degree 8])

julia> L = integer_lattice(; gram = QQ[1 0 0  0;
                                       0 9 3  3;
                                       0 3 2  1;
                                       0 3 1 11])
Integer lattice of rank 4 and degree 4
with gram matrix
[1   0   0    0]
[0   9   3    3]
[0   3   2    1]
[0   3   1   11]

julia> root_lattice_recognition(L)
([(:A, 1), (:I, 1)], ZZLat[Integer lattice of rank 1 and degree 4, Integer lattice of rank 1 and degree 4])
source
root_lattice_recognition_fundamentalMethod
root_lattice_recognition_fundamental(L::ZZLat)

Return the ADE type of the root sublattice of L as well as the corresponding irreducible root sublattices with basis given by a fundamental root system.

The type (:I, 1) corresponds to the odd unimodular root lattice of rank 1.

Input:

L – a definite and integral $\mathbb Z$-lattice.

Output:

  • the root sublattice, with basis given by a fundamental root system
  • the ADE types
  • a Vector consisting of the irreducible root sublattices.

Examples

julia> L = integer_lattice(gram=ZZ[4  0 0  0 3  0 3  0;
                            0 16 8 12 2 12 6 10;
                            0  8 8  6 2  8 4  5;
                            0 12 6 10 2  9 5  8;
                            3  2 2  2 4  2 4  2;
                            0 12 8  9 2 12 6  9;
                            3  6 4  5 4  6 6  5;
                            0 10 5  8 2  9 5  8])
Integer lattice of rank 8 and degree 8
with gram matrix
[4    0   0    0   3    0   3    0]
[0   16   8   12   2   12   6   10]
[0    8   8    6   2    8   4    5]
[0   12   6   10   2    9   5    8]
[3    2   2    2   4    2   4    2]
[0   12   8    9   2   12   6    9]
[3    6   4    5   4    6   6    5]
[0   10   5    8   2    9   5    8]

julia> R = root_lattice_recognition_fundamental(L);

julia> gram_matrix(R[1])
[2    0    0    0    0    0    0]
[0    2    0   -1    0    0    0]
[0    0    2   -1    0    0    0]
[0   -1   -1    2   -1    0    0]
[0    0    0   -1    2   -1    0]
[0    0    0    0   -1    2   -1]
[0    0    0    0    0   -1    2]
source
ADE_typeMethod
ADE_type(G::MatrixElem) -> Tuple{Symbol,Int64}

Return the type of the irreducible root lattice with gram matrix G.

See also root_lattice_recognition.

Examples

julia> Hecke.ADE_type(gram_matrix(root_lattice(:A,3)))
(:A, 3)
source
coxeter_numberMethod
coxeter_number(ADE::Symbol, n) -> Int

Return the Coxeter number of the corresponding ADE root lattice.

If $L$ is a root lattice and $R$ its set of roots, then the Coxeter number $h$ is $|R|/n$ where n is the rank of $L$.

Examples

julia> coxeter_number(:D, 4)
6
source
highest_rootMethod
highest_root(ADE::Symbol, n) -> ZZMatrix

Return coordinates of the highest root of root_lattice(ADE, n).

Examples

julia> highest_root(:E, 6)
[1   2   3   2   1   2]
source

Module operations

Most module operations assume that the lattices live in the same ambient space. For instance only lattices in the same ambient space compare.

==Method

Return true if both lattices have the same ambient quadratic space and the same underlying module.

source
is_sublatticeMethod
is_sublattice(L::AbstractLat, M::AbstractLat) -> Bool

Return whether M is a sublattice of the lattice L.

source
is_sublattice_with_relationsMethod
is_sublattice_with_relations(M::ZZLat, N::ZZLat) -> Bool, QQMatrix

Returns whether $N$ is a sublattice of $M$. In this case, the second return value is a matrix $B$ such that $B B_M = B_N$, where $B_M$ and $B_N$ are the basis matrices of $M$ and $N$ respectively.

source
+Method
+(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the sum of the lattices L and M.

The lattices L and M must have the same ambient space.

source
*Method
*(a::RationalUnion, L::ZZLat) -> ZZLat

Return the lattice $aM$ inside the ambient space of $M$.

source
intersectMethod
intersect(L::AbstractLat, M::AbstractLat) -> AbstractLat

Return the intersection of the lattices L and M.

The lattices L and M must have the same ambient space.

source
inMethod
Base.in(v::Vector, L::ZZLat) -> Bool

Return whether the vector v lies in the lattice L.

source
inMethod
Base.in(v::QQMatrix, L::ZZLat) -> Bool

Return whether the row span of v lies in the lattice L.

source
primitive_closureMethod
primitive_closure(M::ZZLat, N::ZZLat) -> ZZLat

Given two $\mathbb Z$-lattices M and N with $N \subseteq \mathbb{Q} M$, return the primitive closure $M \cap \mathbb{Q} N$ of N in M.

Examples

julia> M = root_lattice(:D, 6);

julia> N = lattice_in_same_ambient_space(M, 3*basis_matrix(M)[1:1,:]);

julia> basis_matrix(N)
[3   0   0   0   0   0]

julia> N2 = primitive_closure(M, N)
Integer lattice of rank 1 and degree 6
with gram matrix
[2]

julia> basis_matrix(N2)
[1   0   0   0   0   0]

julia> M2 = primitive_closure(dual(M), M);

julia> is_integral(M2)
false
source
is_primitiveMethod
is_primitive(M::ZZLat, N::ZZLat) -> Bool

Given two $\mathbb Z$-lattices $N \subseteq M$, return whether N is a primitive sublattice of M.

Examples

julia> U = hyperbolic_plane_lattice(3);

julia> bU = basis_matrix(U);

julia> e1, e2 = bU[1:1,:], bU[2:2,:]
([1 0], [0 1])

julia> N = lattice_in_same_ambient_space(U, e1 + e2)
Integer lattice of rank 1 and degree 2
with gram matrix
[6]

julia> is_primitive(U, N)
true

julia> M = root_lattice(:A, 3);

julia> f = matrix(QQ, 3, 3, [0 1 1; -1 -1 -1; 1 1 0]);

julia> N = kernel_lattice(M, f+1)
Integer lattice of rank 1 and degree 3
with gram matrix
[4]

julia> is_primitive(M, N)
true
source
is_primitiveMethod
is_primitive(L::ZZLat, v::Union{Vector, QQMatrix}) -> Bool

Return whether the vector v is primitive in L.

A vector v in a $\mathbb Z$-lattice L is called primitive if for all w in L such that $v = dw$ for some integer d, then $d = \pm 1$.

source
divisibilityMethod
divisibility(L::ZZLat, v::Union{Vector, QQMatrix}) -> QQFieldElem

Return the divisibility of v with respect to L.

For a vector v in the ambient quadratic space $(V, \Phi)$ of L, we call the divisibility of v with the respect to L the non-negative generator of the fractional $\mathbb Z$-ideal $\Phi(v, L)$.

source

Embeddings

Categorical constructions

direct_sumMethod
direct_sum(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
direct_sum(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}

Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their direct sum $L := L_1 \oplus \ldots \oplus L_n$, together with the injections $L_i \to L$. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct product with the projections $L \to L_i$, one should call direct_product(x). If one wants to obtain L as a biproduct with the injections $L_i \to L$ and the projections $L \to L_i$, one should call biproduct(x).

source
direct_productMethod
direct_product(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}
direct_product(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}

Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their direct product $L := L_1 \times \ldots \times L_n$, together with the projections $L \to L_i$. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct sum with the injections $L_i \to L$, one should call direct_sum(x). If one wants to obtain L as a biproduct with the injections $L_i \to L$ and the projections $L \to L_i$, one should call biproduct(x).

source
biproductMethod
biproduct(x::Vararg{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}
biproduct(x::Vector{ZZLat}) -> ZZLat, Vector{AbstractSpaceMor}, Vector{AbstractSpaceMor}

Given a collection of $\mathbb Z$-lattices $L_1, \ldots, L_n$, return their biproduct $L := L_1 \oplus \ldots \oplus L_n$, together with the injections $L_i \to L$ and the projections $L \to L_i$. (seen as maps between the corresponding ambient spaces).

For objects of type ZZLat, finite direct sums and finite direct products agree and they are therefore called biproducts. If one wants to obtain L as a direct sum with the injections $L_i \to L$, one should call direct_sum(x). If one wants to obtain L as a direct product with the projections $L \to L_i$, one should call direct_product(x).

source

Orthogonal sublattices

orthogonal_submoduleMethod
orthogonal_submodule(L::ZZLat, S::ZZLat) -> ZZLat

Return the largest submodule of $L$ orthogonal to $S$.

source
irreducible_componentsMethod
irreducible_components(L::ZZLat) -> Vector{ZZLat}

Return the irreducible components $L_i$ of the positive definite lattice $L$.

This yields a maximal orthogonal splitting of L as

\[L = \bigoplus_i L_i.\]

source

Dual lattice

dualMethod
dual(L::AbstractLat) -> AbstractLat

Return the dual lattice of the lattice L.

source

Discriminant group

See discriminant_group(L::ZZLat).

Overlattices

glue_mapMethod
glue_map(L::ZZLat, S::ZZLat, R::ZZLat; check=true)
                       -> Tuple{TorQuadModuleMap, TorQuadModuleMap, TorQuadModuleMap}

Given three integral $\mathbb Z$-lattices L, S and R, with S and R primitive sublattices of L and such that the sum of the ranks of S and R is equal to the rank of L, return the glue map $\gamma$ of the primitive extension $S+R \subseteq L$, as well as the inclusion maps of the domain and codomain of $\gamma$ into the respective discriminant groups of S and R.

Example

julia> M = root_lattice(:E,8);

julia> f = matrix(QQ, 8, 8, [-1 -1  0  0  0  0  0  0;
                              1  0  0  0  0  0  0  0;
                              0  1  1  0  0  0  0  0;
                              0  0  0  1  0  0  0  0;
                              0  0  0  0  1  0  0  0;
                              0  0  0  0  0  1  1  0;
                             -2 -4 -6 -5 -4 -3 -2 -3;
                              0  0  0  0  0  0  0  1]);

julia> S = kernel_lattice(M ,f-1)
Integer lattice of rank 4 and degree 8
with gram matrix
[12   -3    0   -3]
[-3    2   -1    0]
[ 0   -1    2    0]
[-3    0    0    2]

julia> R = kernel_lattice(M , f^2+f+1)
Integer lattice of rank 4 and degree 8
with gram matrix
[ 2   -1    0    0]
[-1    2   -6    0]
[ 0   -6   30   -3]
[ 0    0   -3    2]

julia> glue, iS, iR = glue_map(M, S, R)
(Map: finite quadratic module -> finite quadratic module, Map: finite quadratic module -> finite quadratic module, Map: finite quadratic module -> finite quadratic module)

julia> is_bijective(glue)
true
source
overlatticeMethod
overlattice(glue_map::TorQuadModuleMap) -> ZZLat

Given the glue map of a primitive extension of $\mathbb Z$-lattices $S+R \subseteq L$, return L.

Example

julia> M = root_lattice(:E,8);

julia> f = matrix(QQ, 8, 8, [ 1  0  0  0  0  0  0  0;
                              0  1  0  0  0  0  0  0;
                              1  2  4  4  3  2  1  2;
                             -2 -4 -6 -5 -4 -3 -2 -3;
                              2  4  6  4  3  2  1  3;
                             -1 -2 -3 -2 -1  0  0 -2;
                              0  0  0  0  0 -1  0  0;
                             -1 -2 -3 -3 -2 -1  0 -1]);

julia> S = kernel_lattice(M ,f-1)
Integer lattice of rank 4 and degree 8
with gram matrix
[ 2   -1     0     0]
[-1    2    -1     0]
[ 0   -1    12   -15]
[ 0    0   -15    20]

julia> R = kernel_lattice(M , f^4+f^3+f^2+f+1)
Integer lattice of rank 4 and degree 8
with gram matrix
[10   -4    0    1]
[-4    2   -1    0]
[ 0   -1    4   -3]
[ 1    0   -3    4]

julia> glue, iS, iR = glue_map(M, S, R);

julia> overlattice(glue) == M
true
source
local_modificationMethod
local_modification(M::ZZLat, L::ZZLat, p)

Return a local modification of M that matches L at p.

INPUT:

  • $M$ – a \mathbb{Z}_p-maximal lattice
  • $L$ – the a lattice isomorphic to M over \QQ_p
  • $p$ – a prime number

OUTPUT:

an integral lattice M' in the ambient space of M such that M and M' are locally equal at all completions except at p where M' is locally isometric to the lattice L.

source
maximal_integral_latticeMethod
maximal_integral_lattice(L::AbstractLat) -> AbstractLat

Given a lattice L with integral norm, return a maximal integral overlattice M of L.

source

Sublattices defined by endomorphisms

kernel_latticeMethod
kernel_lattice(L::ZZLat, f::MatElem;
               ambient_representation::Bool = true) -> ZZLat

Given a $\mathbf{Z}$-lattice $L$ and a matrix $f$ inducing an endomorphism of $L$, return $\ker(f)$ is a sublattice of $L$.

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.

source
invariant_latticeMethod
invariant_lattice(L::ZZLat, G::Vector{MatElem};
                  ambient_representation::Bool = true) -> ZZLat
invariant_lattice(L::ZZLat, G::MatElem;
                  ambient_representation::Bool = true) -> ZZLat

Given a $\mathbf{Z}$-lattice $L$ and a list of matrices $G$ inducing endomorphisms of $L$ (or just one matrix $G$), return the lattice $L^G$, consisting on elements fixed by $G$.

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.

source
coinvariant_latticeMethod
coinvariant_lattice(L::ZZLat, G::Vector{MatElem};
                    ambient_representation::Bool = true) -> ZZLat
coinvariant_lattice(L::ZZLat, G::MatElem;
                    ambient_representation::Bool = true) -> ZZLat

Given a $\mathbf{Z}$-lattice $L$ and a list of matrices $G$ inducing endomorphisms of $L$ (or just one matrix $G$), return the orthogonal complement $L_G$ in $L$ of the fixed lattice $L^G$ (see invariant_lattice).

If ambient_representation is true (the default), the endomorphism is represented with respect to the ambient space of $L$. Otherwise, the endomorphism is represented with respect to the basis of $L$.

source

Computing embeddings

embedMethod
embed(S::ZZLat, G::Genus, primitive::Bool=true) -> Bool, embedding

Return a (primitive) embedding of the integral lattice S into some lattice in the genus of G.

julia> G = integer_genera((8,0), 1, even=true)[1];

julia> L, S, i = embed(root_lattice(:A,5), G);
source
embed_in_unimodularMethod
embed_in_unimodular(S::ZZLat, pos::Int, neg::Int, primitive=true, even=true) -> Bool, L, S', iS, iR

Return a (primitive) embedding of the integral lattice S into some (even) unimodular lattice of signature (pos, neg).

For now this works only for even lattices.

julia> NS = direct_sum(integer_lattice(:U), rescale(root_lattice(:A, 16), -1))[1];

julia> LK3, iNS, i = embed_in_unimodular(NS, 3, 19);

julia> genus(LK3)
Genus symbol for integer lattices
Signatures: (3, 0, 19)
Local symbol:
  Local genus symbol at 2: 1^22

julia> iNS
Integer lattice of rank 18 and degree 22
with gram matrix
[0   1    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0]
[1   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    0]
[0   0   -2    1    0    0    0    0    0    0    0    0    0    0    0    0    0    0]
[0   0    1   -2    1    0    0    0    0    0    0    0    0    0    0    0    0    0]
[0   0    0    1   -2    1    0    0    0    0    0    0    0    0    0    0    0    0]
[0   0    0    0    1   -2    1    0    0    0    0    0    0    0    0    0    0    0]
[0   0    0    0    0    1   -2    1    0    0    0    0    0    0    0    0    0    0]
[0   0    0    0    0    0    1   -2    1    0    0    0    0    0    0    0    0    0]
[0   0    0    0    0    0    0    1   -2    1    0    0    0    0    0    0    0    0]
[0   0    0    0    0    0    0    0    1   -2    1    0    0    0    0    0    0    0]
[0   0    0    0    0    0    0    0    0    1   -2    1    0    0    0    0    0    0]
[0   0    0    0    0    0    0    0    0    0    1   -2    1    0    0    0    0    0]
[0   0    0    0    0    0    0    0    0    0    0    1   -2    1    0    0    0    0]
[0   0    0    0    0    0    0    0    0    0    0    0    1   -2    1    0    0    0]
[0   0    0    0    0    0    0    0    0    0    0    0    0    1   -2    1    0    0]
[0   0    0    0    0    0    0    0    0    0    0    0    0    0    1   -2    1    0]
[0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    1   -2    1]
[0   0    0    0    0    0    0    0    0    0    0    0    0    0    0    0    1   -2]

julia> is_primitive(LK3, iNS)
true
source

LLL, Short and Close Vectors

LLL and indefinite LLL

lllMethod
lll(L::ZZLat, same_ambient::Bool = true) -> ZZLat

Given an integral $\mathbb Z$-lattice L with basis matrix B, compute a basis C of L such that the gram matrix $G_C$ of L with respect to C is LLL-reduced.

By default, it creates the lattice in the same ambient space as L. This can be disabled by setting same_ambient = false. Works with both definite and indefinite lattices.

source

Short Vectors

short_vectorsFunction
short_vectors(L::ZZLat, [lb = 0], ub, [elem_type = ZZRingElem]; check::Bool = true)
                                   -> Vector{Tuple{Vector{elem_type}, QQFieldElem}}

Return all tuples (v, n) such that $n = |v G v^t|$ satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors_iterator for an iterator version.

source
shortest_vectorsFunction
shortest_vectors(L::ZZLat, [elem_type = ZZRingElem]; check::Bool = true)
                                           -> QQFieldElem, Vector{elem_type}, QQFieldElem}

Return the list of shortest non-zero vectors in absolute value. Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also minimum.

source
short_vectors_iteratorFunction
short_vectors_iterator(L::ZZLat, [lb = 0], ub,
                       [elem_type = ZZRingElem]; check::Bool = true)
                                -> Tuple{Vector{elem_type}, QQFieldElem} (iterator)

Return an iterator for all tuples (v, n) such that $n = |v G v^t|$ satisfies lb <= n <= ub, where G is the Gram matrix of L and v is non-zero.

Note that the vectors are computed up to sign (so only one of v and -v appears).

It is assumed and checked that L is definite.

See also short_vectors.

source
minimumMethod
minimum(L::ZZLat) -> QQFieldElem

Return the minimum absolute squared length among the non-zero vectors in L.

source
kissing_numberMethod
kissing_number(L::ZZLat) -> Int

Return the Kissing number of the sphere packing defined by L.

This is the number of non-overlapping spheres touching any other given sphere.

source

Close Vectors

close_vectorsMethod
close_vectors(L:ZZLat, v:Vector, [lb,], ub; check::Bool = false)
                                        -> Vector{Tuple{Vector{Int}}, QQFieldElem}

Return all tuples (x, d) where x is an element of L such that d = b(v - x, v - x) <= ub. If lb is provided, then also lb <= d.

If filter is not nothing, then only those x with filter(x) evaluating to true are returned.

By default, it will be checked whether L is positive definite. This can be disabled setting check = false.

Both input and output are with respect to the basis matrix of L.

Examples

julia> L = integer_lattice(matrix(QQ, 2, 2, [1, 0, 0, 2]));

julia> close_vectors(L, [1, 1], 1)
3-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}:
 ([2, 1], 1)
 ([0, 1], 1)
 ([1, 1], 0)

julia> close_vectors(L, [1, 1], 1, 1)
2-element Vector{Tuple{Vector{ZZRingElem}, QQFieldElem}}:
 ([2, 1], 1)
 ([0, 1], 1)
source