Monomial Orderings
Given a coefficient ring $C$ as in the previous section, let $C[x]=C[x_1, \ldots, x_n]$ be the polynomial ring over $C$ in the set of variables $x=\{x_1, \ldots, x_n\}$. Monomials in $x=\{x_1, \ldots, x_n\}$ are written using multi–indices: If $\alpha=(\alpha_1, \ldots, \alpha_n)\in \N^n$, set $x^\alpha=x_1^{\alpha_1}\cdots x_n^{\alpha_n}$ and
\[\text{Mon}_n(x) := \text{Mon}(x_1, \ldots, x_n) := \{x^\alpha \mid \alpha \in \N^n\}.\]
A monomial ordering on $\text{Mon}_n(x)$ is a total ordering $>$ on $\text{Mon}_n(x)$ such that
\[x^\alpha > x^\beta \Longrightarrow x^\gamma x^\alpha > x^\gamma x^\beta, \; \text{ for all }\; \alpha, \beta, \gamma \in \mathbb N^n.\]
A monomial ordering $>$ on $\text{Mon}_n(x)$ is called
- global if $x^\alpha > 1$ for all $\alpha \not = (0, \dots, 0)$,
- local if $x^\alpha < 1$ for all $\alpha \not = (0, \dots, 0)$, and
- mixed if it is neither global nor local.
- A monomial ordering on $\text{Mon}_n(x)$ is global iff it is a well-ordering.
- To give a monomial ordering on $\text{Mon}_n(x)$ means to give a total ordering $>$ on $ \N^n$ such that $\alpha > \beta$ implies $ \gamma + \alpha > \gamma + \beta$ for all $\alpha , \beta, \gamma \in \N^n.$ Rather than speaking of a monomial ordering on $\text{Mon}_n(x)$, we may, thus, also speak of a (global, local, mixed) monomial ordering on $\N^n$.
By a result of Robbiano, every monomial ordering can be realized as a matrix ordering.
The lexicograpical monomial ordering specifies the default way of storing and displaying multivariate polynomials in OSCAR (terms are sorted in descending order). The other orderings which can be attached to a multivariate polynomial ring are the degree lexicographical ordering and the degree reverse lexicographical ordering. Independently of the attached orderings, Gröbner bases can be computed with respect to any monomial ordering. See the section on Gröbner bases.
In this section, we show how to create monomial orderings in OSCAR.
For the convenient construction of block orderings on the set of monomials in the variables of a given multivariate polynomial ring, we allow to construct orderings on the monomials in blocks of variables, viewing these orderings as partial orderings on the monomials in all variables.
Here are some illustrating examples:
Examples
julia> S, (w, x) = polynomial_ring(QQ, ["w", "x"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[w, x])
julia> o = lex([w, x])
lex([w, x])
julia> canonical_matrix(o)
[1 0]
[0 1]
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = degrevlex([w, x])
degrevlex([w, x])
julia> is_global(o1)
true
julia> canonical_matrix(o1)
[1 1 0 0]
[0 -1 0 0]
julia> o2 = neglex([y, z])
neglex([y, z])
julia> is_local(o2)
true
julia> canonical_matrix(o2)
[0 0 -1 0]
[0 0 0 -1]
julia> o3 = o1*o2
degrevlex([w, x])*neglex([y, z])
julia> canonical_matrix(o3)
[1 1 0 0]
[0 -1 0 0]
[0 0 -1 0]
[0 0 0 -1]
julia> is_mixed(o3)
true
Monomial Comparisons
The cmp
function should be used for comparing two monomials with regard to a monomial ordering.
cmp
— Methodcmp(ord::MonomialOrdering, a::MPolyRingElem, b::MPolyRingElem)
cmp(ord::ModuleOrdering, a::FreeModElem{T}, b::FreeModElem{T}) where T <: MPolyRingElem
Compare monomials a
and b
with regard to the ordering ord
: Return -1
for a < b
and 1
for a > b
and 0
for a == b
. An error is thrown if ord
is a partial ordering that does not distinguish a
from b
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> cmp(lex([x,y]), x, one(R))
1
julia> try cmp(lex([x,y]), z, one(R)); catch e; e; end
ErrorException("z and 1 are incomparable with respect to lex([x, y])")
julia> cmp(lex([x,y,z]), z, one(R))
1
julia> F = free_module(R, 2)
Free module of rank 2 over R
julia> cmp(lex(R)*invlex(F), F[1], F[2])
-1
Matrix Orderings
Given a matrix $M\in \text{Mat}(k\times n,\mathbb R)$ of rank $n$, with rows $m_1,\dots,m_k$, the matrix ordering defined by $M$ is obtained by setting
\[x^\alpha>_M x^\beta \Leftrightarrow \;\exists\; 1\leq i\leq k: m_1\alpha=m_1\beta,\ldots, m_{i-1}\alpha\ =m_{i-1}\beta,\ m_i\alpha>m_i\beta\]
(here, $\alpha$ and $\beta$ are regarded as column vectors).
By a theorem of Robbiano, every monomial ordering arises as a matrix ordering as above with $M\in \text{GL}(n,\mathbb R)$.
To create matrix orderings, OSCAR allows for matrices with integer coefficients as input matrices.
For orderings such as lex
and degrevlex
which are predefined in OSCAR, using the predefined version is much faster than using a representation as a matrix ordering.
matrix_ordering
— Methodmatrix_ordering(R::MPolyRing, M::Union{Matrix{T}, MatElem{T}}; check::Bool = true) where T -> MonomialOrdering
Given an integer matrix M
such that nvars(R) = ncols(M) = rank(M)
, return the matrix ordering on the set of variables of R
which is defined by M
.
matrix_ordering(V::AbstractVector{<:MPolyRingElem}, M::Union{Matrix{T}, MatElem{T}}; check::Bool = true) where T -> MonomialOrdering
Given a vector V
of variables and an integer matrix M
such that length(V) = ncols(M) = rank(M)
, return the matrix ordering on the set of monomials in the given variables which is defined by M
.
The matrix M
need not be square.
If check = false
is supplied, the rank check is omitted, and the resulting ordering may only be partial.
Examples
julia> R, (w, x, y, z) = QQ["w", "x", "y", "z"];
julia> M =[1 1 1 1; 0 -1 -1 -1; 0 0 -1 -1; 0 0 0 -1]
4×4 Matrix{Int64}:
1 1 1 1
0 -1 -1 -1
0 0 -1 -1
0 0 0 -1
julia> o1 = matrix_ordering(R, M)
matrix_ordering([w, x, y, z], [1 1 1 1; 0 -1 -1 -1; 0 0 -1 -1; 0 0 0 -1])
julia> N =[1 1; 0 -1]
2×2 Matrix{Int64}:
1 1
0 -1
julia> o2 = matrix_ordering([w, x], N)
matrix_ordering([w, x], [1 1; 0 -1])
julia> canonical_matrix(o2)
[1 1 0 0]
[0 -1 0 0]
julia> o3 = matrix_ordering(gens(R)[3:4], N)
matrix_ordering([y, z], [1 1; 0 -1])
julia> o3 = matrix_ordering(gens(R)[3:4], N)
matrix_ordering([y, z], [1 1; 0 -1])
julia> canonical_matrix(o3)
[0 0 1 1]
[0 0 0 -1]
As already shown above, OSCAR provides functions to recover defining matrices from given monomial orderings:
matrix
— Methodmatrix(ord::MonomialOrdering)
Return a matrix defining ord
as a matrix ordering.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> o1 = degrevlex(R)
degrevlex([x, y, z])
julia> matrix(o1)
[ 1 1 1]
[ 0 0 -1]
[ 0 -1 0]
[-1 0 0]
julia> o2 = degrevlex([x, y])
degrevlex([x, y])
julia> matrix(o2)
[ 1 1 0]
[ 0 -1 0]
[-1 0 0]
canonical_matrix
— Methodcanonical_matrix(ord::MonomialOrdering)
Return the canonical matrix defining ord
as a matrix ordering.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> o1 = degrevlex(R)
degrevlex([x, y, z])
julia> canonical_matrix(o1)
[1 1 1]
[0 0 -1]
[0 -1 0]
julia> o2 = degrevlex([x, y])
degrevlex([x, y])
julia> canonical_matrix(o2)
[1 1 0]
[0 -1 0]
Predefined Global Orderings
The Lexicographical Ordering
The lexicographical ordering lex
is defined by setting
\[x^\alpha > x^\beta \; \Leftrightarrow \;\exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i.\]
lex
— Methodlex(R::MPolyRing) -> MonomialOrdering
Return the lexicographical ordering on the set of monomials in the variables of R
.
lex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = lex(R)
lex([w, x, y, z])
julia> canonical_matrix(o1)
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
julia> o2 = lex([w, x])
lex([w, x])
julia> o3 = lex(gens(R)[3:4])
lex([y, z])
The Degree Lexicographical Ordering
The degree lexicographical ordering deglex
is defined by setting $\;\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \deg(x^\alpha) > \deg(x^\beta) \;\text{ or }\; (\deg(x^\alpha) = \deg(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i).\]
deglex
— Methoddeglex(R::MPolyRing) -> MonomialOrdering
Return the degree lexicographical ordering on the set of monomials in the variables of R
.
deglex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the degree lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = deglex(R)
deglex([w, x, y, z])
julia> canonical_matrix(o1)
[1 1 1 1]
[0 -1 -1 -1]
[0 0 -1 -1]
[0 0 0 -1]
julia> o2 = deglex([w, x])
deglex([w, x])
julia> o3 = deglex(gens(R)[3:4])
deglex([y, z])
The Inverse Lexicographical Ordering
The inverse lexicographical ordering invlex
is defined by setting
\[x^\alpha > x^\beta \; \Leftrightarrow \;\exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i.\]
invlex
— Methodinvlex(R::MPolyRing) -> MonomialOrdering
Return the inverse lexicographical ordering on the set of monomials in the variables of R
.
invlex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the inverse lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = invlex(R)
invlex([w, x, y, z])
julia> canonical_matrix(o1)
[0 0 0 1]
[0 0 1 0]
[0 1 0 0]
[1 0 0 0]
julia> o2 = invlex([w, x])
invlex([w, x])
julia> o3 = invlex(gens(R)[3:4])
invlex([y, z])
The Degree Inverse Lexicographical Ordering
The degree inverse lexicographical ordering deginvlex
is defined by setting
\[x^\alpha > x^\beta \; \Leftrightarrow \deg(x^\alpha) > \deg(x^\beta) \;\text{ or }\;(\deg(x^\alpha) = \deg(x^\beta) \;\text{ and }\; \;\exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i > \beta_i).\]
deginvlex
— Methoddeginvlex(R::MPolyRing) -> MonomialOrdering
Return the degree inverse lexicographical ordering on the set of monomials in the variables of R
.
deginvlex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the degree inverse lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = deginvlex(R)
deginvlex([w, x, y, z])
julia> canonical_matrix(o1)
[1 1 1 1]
[0 0 0 1]
[0 0 1 0]
[0 1 0 0]
julia> o2 = deginvlex([w, x])
deginvlex([w, x])
julia> o3 = deginvlex(gens(R)[3:4])
deginvlex([y, z])
The Degree Reverse Lexicographical Ordering
The degree reverse lexicographical ordering degrevlex
is defined by setting $\;\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \deg(x^\alpha) > \deg(x^\beta) \;\text{ or }\;(\deg(x^\alpha) = \deg(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i).\]
degrevlex
— Methoddegrevlex(R::MPolyRing) -> MonomialOrdering
Return the degree reverse lexicographical ordering on the set of monomials in the variables of R
.
degrevlex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the degree reverse lexicographical ordering on the set of monomials in these variables
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = degrevlex(R)
degrevlex([w, x, y, z])
julia> canonical_matrix(o1)
[1 1 1 1]
[0 0 0 -1]
[0 0 -1 0]
[0 -1 0 0]
julia> o2 = degrevlex([w, x])
degrevlex([w, x])
julia> o3 = degrevlex(gens(R)[3:4])
degrevlex([y, z])
Weighted Lexicographical Orderings
If W
is a vector of positive integers $w_1, \dots, w_n$, the corresponding weighted lexicographical ordering wdeglex(W)
is defined by setting $\;\text{wdeg}(x^\alpha) = w_1\alpha_1 + \cdots + w_n\alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \text{wdeg}(x^\alpha) > \text{wdeg}(x^\beta) \;\text{ or }\;\\ (\text{wdeg}(x^\alpha) = \text{wdeg}(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i).\]
wdeglex
— Methodwdeglex(R::MPolyRing, W::Vector{Int}) -> MonomialOrdering
If W
is a vector of positive integers, return the corresponding weighted lexicographical ordering on the set of monomials in the variables of R
.
wdeglex(V::AbstractVector{<:MPolyRingElem}, W::Vector{Int}) -> MonomialOrdering
Given a vector V
of variables and a vector W
of positive integers, return the corresponding weighted lexicographical ordering on the set of monomials in the given variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = wdeglex(R, [1, 2, 3, 4])
wdeglex([w, x, y, z], [1, 2, 3, 4])
julia> canonical_matrix(o1)
[1 2 3 4]
[0 -2 -3 -4]
[0 0 -3 -4]
[0 0 0 -1]
julia> o2 = wdeglex([w, x], [1, 2])
wdeglex([w, x], [1, 2])
julia> o3 = wdeglex(gens(R)[3:4], [3, 4])
wdeglex([y, z], [3, 4])
Weighted Reverse Lexicographical Orderings
If W
is a vector of positive integers $w_1, \dots, w_n$, the corresponding weighted reverse lexicographical ordering wdegrevlex
is defined by setting $\;\text{wdeg}(x^\alpha) = w_1\alpha_1 + \cdots + w_n\alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \text{wdeg}(x^\alpha) > \text{wdeg}(x^\beta) \;\text{ or }\;\\ (\text{wdeg}(x^\alpha) = \text{wdeg}(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i).\]
wdegrevlex
— Methodwdegrevlex(R::MPolyRing, W::Vector{Int}) -> MonomialOrdering
If W
is a vector of positive integers, return the corresponding weighted reverse lexicographical ordering on the set of monomials in the variables of R
.
wdegrevlex(V::AbstractVector{<:MPolyRingElem}, W::Vector{Int}) -> MonomialOrdering
Given a vector V
of variables and a vector W
of positive integers, return the corresponding weighted reverse lexicographical ordering on the set of monomials in the given variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = wdegrevlex(R, [1, 2, 3, 4])
wdegrevlex([w, x, y, z], [1, 2, 3, 4])
julia> canonical_matrix(o1)
[1 2 3 4]
[0 0 0 -1]
[0 0 -1 0]
[0 -1 0 0]
julia> o2 = wdegrevlex([w, x], [1, 2])
wdegrevlex([w, x], [1, 2])
julia> o3 = wdegrevlex(gens(R)[3:4], [3, 4])
wdegrevlex([y, z], [3, 4])
Predefined Local Orderings
The Negative Lexicographical Ordering
The negative lexicographical ordering neglex
is defined by setting
\[x^\alpha > x^\beta \; \Leftrightarrow \;\exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i < \beta_i.\]
neglex
— Methodneglex(R::MPolyRing) -> MonomialOrdering
Return the negative lexicographical ordering on the set of monomials in the variables of R
.
neglex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the negative lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = neglex(R)
neglex([w, x, y, z])
julia> canonical_matrix(o1)
[-1 0 0 0]
[ 0 -1 0 0]
[ 0 0 -1 0]
[ 0 0 0 -1]
julia> o2 = neglex([w, x])
neglex([w, x])
julia> o3 = neglex(gens(R)[3:4])
neglex([y, z])
The Negative Degree Lexicographical Ordering
The negative degree lexicographical ordering negdeglex
is defined by setting $\;\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \deg(x^\alpha) < \deg(x^\beta) \;\text{ or }\; (\deg(x^\alpha) = \deg(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i).\]
negdeglex
— Methodnegdeglex(R::MPolyRing) -> MonomialOrdering
Return the negative degree lexicographical ordering on the set of monomials in the variables of R
.
negdeglex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the negative degree lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = negdeglex(R)
negdeglex([w, x, y, z])
julia> canonical_matrix(o1)
[-1 -1 -1 -1]
[ 0 -1 -1 -1]
[ 0 0 -1 -1]
[ 0 0 0 -1]
julia> o2 = negdeglex([w, x])
negdeglex([w, x])
julia> o3 = negdeglex(gens(R)[3:4])
negdeglex([y, z])
The Negative Inverse Lexicographical Ordering
The negative inverse lexicographical ordering neginvlex
is defined by setting
\[x^\alpha > x^\beta \; \Leftrightarrow \;\exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i.\]
neginvlex
— Methodneginvlex(R::MPolyRing) -> MonomialOrdering
Return the negative inverse lexicographical ordering on the set of monomials in the variables of R
.
neginvlex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the negative inverse lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = neginvlex(R)
neginvlex([w, x, y, z])
julia> canonical_matrix(o1)
[ 0 0 0 -1]
[ 0 0 -1 0]
[ 0 -1 0 0]
[-1 0 0 0]
julia> o2 = neginvlex([w, x])
neginvlex([w, x])
julia> o3 = neginvlex(gens(R)[3:4])
neginvlex([y, z])
The Negative Degree Reverse Lexicographical Ordering
The negative degree reverse lexicographical ordering negdegrevlex
is defined by setting $\;\deg(x^\alpha) = \alpha_1 + \cdots + \alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \deg(x^\alpha) < \deg(x^\beta) \;\text{ or }\;(\deg(x^\alpha) = \deg(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i).\]
negdegrevlex
— Methodnegdegrevlex(R::MPolyRing) -> MonomialOrdering
Return the negative degree reverse lexicographical ordering on the set of monomials in the variables of R
.
negdegrevlex(V::AbstractVector{<:MPolyRingElem}) -> MonomialOrdering
Given a vector V
of variables, return the negative degree reverse lexicographical ordering on the set of monomials in these variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = negdegrevlex(R)
negdegrevlex([w, x, y, z])
julia> canonical_matrix(o1)
[-1 -1 -1 -1]
[ 0 0 0 -1]
[ 0 0 -1 0]
[ 0 -1 0 0]
julia> o2 = negdegrevlex([w, x])
negdegrevlex([w, x])
julia> o3 = negdegrevlex(gens(R)[3:4])
negdegrevlex([y, z])
Negative Weighted Lexicographical Orderings
If W
is a vector of positive integers $w_1, \dots, w_n$, the corresponding negative weighted lexicographical ordering negwdeglex(W)
is defined by setting $\;\text{wdeg}(x^\alpha) = w_1\alpha_1 + \cdots + w_n\alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \text{wdeg}(x^\alpha) < \text{wdeg}(x^\beta) \;\text{ or }\;\\ (\text{wdeg}(x^\alpha) = \text{wdeg}(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_1 = \beta_1, \dots, \alpha_{i-1} = \beta_{i-1}, \alpha_i > \beta_i).\]
negwdeglex
— Methodnegwdeglex(R::MPolyRing, W::Vector{Int}) -> MonomialOrdering
If W
is a vector of positive integers, return the corresponding negative weighted lexicographical ordering on the set of monomials in the variables of R
.
negwdeglex(V::AbstractVector{<:MPolyRingElem}, W::Vector{Int}) -> MonomialOrdering
Given a vector V
of variables and a vector W
of positive integers, return the corresponding negative weighted lexicographical ordering on the set of monomials in the given variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = negwdeglex(R, [1, 2, 3, 4])
negwdeglex([w, x, y, z], [1, 2, 3, 4])
julia> canonical_matrix(o1)
[-1 -2 -3 -4]
[ 0 -2 -3 -4]
[ 0 0 -3 -4]
[ 0 0 0 -1]
julia> o2 = negwdeglex([w, x], [1, 2])
negwdeglex([w, x], [1, 2])
julia> o3 = negwdeglex(gens(R)[3:4], [3, 4])
negwdeglex([y, z], [3, 4])
Negative Weighted Reverse Lexicographical Orderings
If W
is a vector of positive integers $w_1, \dots, w_n$, the corresponding negative weighted reverse lexicographical ordering negwdegrevlex(W)
is defined by setting $\;\text{wdeg}(x^\alpha) = w_1\alpha_1 + \cdots + w_n\alpha_n\;$ and
\[x^\alpha > x^\beta \; \Leftrightarrow \; \text{wdeg}(x^\alpha) < \text{wdeg}(x^\beta) \;\text{ or }\;\\ (\text{wdeg}(x^\alpha) = \text{wdeg}(x^\beta) \;\text{ and }\; \exists \; 1 \leq i \leq n: \alpha_n = \beta_n, \dots, \alpha_{i+1} = \beta_{i+1}, \alpha_i < \beta_i).\]
negwdegrevlex
— Methodnegwdegrevlex(R::MPolyRing, W::Vector{Int}) -> MonomialOrdering
If W
is a vector of positive integers, return the corresponding negative weighted reverse lexicographical ordering on the set of monomials in the variables of R
.
negwdegrevlex(V::AbstractVector{<:MPolyRingElem}, W::Vector{Int}) -> MonomialOrdering
Given a vector V
of variables and a vector W
of positive integers, return the corresponding negative weighted reverse lexicographical ordering on the set of monomials in the given variables.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o1 = negwdegrevlex(R, [1, 2, 3, 4])
negwdegrevlex([w, x, y, z], [1, 2, 3, 4])
julia> canonical_matrix(o1)
[-1 -2 -3 -4]
[ 0 0 0 -1]
[ 0 0 -1 0]
[ 0 -1 0 0]
julia> o2 = negwdegrevlex([w, x], [1, 2])
negwdegrevlex([w, x], [1, 2])
julia> o3 = negwdegrevlex(gens(R)[3:4], [3, 4])
negwdegrevlex([y, z], [3, 4])
Weight Orderings
If $W$ is a vector of integers $w_1, \dots, w_n$, and $>$ is a monomial ordering on $\text{Mon}_n(x)$, then the corresponding weight ordering is defined by setting $\;\text{wdeg}(x^\alpha) = w_1\alpha_1 + \cdots + w_n\alpha_n\;$ and
\[x^\alpha >_{W} x^\beta \; \Leftrightarrow \; \text{wdeg}(x^\alpha) > \text{wdeg}(x^\beta) \;\text{ or }\; (\text{wdeg}(x^\alpha) = \text{wdeg}(x^\beta) \;\text{ and }\; x^\alpha > x^\beta).\]
weight_ordering
— Methodweight_ordering(W::Vector{Int}, ord::MonomialOrdering) -> MonomialOrdering
Given an integer vector W
and a monomial ordering ord
on a set of monomials in length(W)
variables, return the monomial ordering ord_W
on this set of monomials which is obtained by first comparing the W
-weighted degrees and then using ord
in the case of a tie.
The ordering ord_W
is
- global if all entries of
W
are positive, or if they are all non-negative andord
is global, - an elimination ordering for the set of variables which correspond to positive entries of
W
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> W = [1, 0, -1];
julia> o = lex(R)
lex([x, y, z])
julia> matrix(o)
[1 0 0]
[0 1 0]
[0 0 1]
julia> oW = weight_ordering(W, o)
matrix_ordering([x, y, z], [1 0 -1])*lex([x, y, z])
julia> matrix(oW)
[1 0 -1]
[1 0 0]
[0 1 0]
[0 0 1]
julia> canonical_matrix(oW)
[1 0 -1]
[0 0 1]
[0 1 0]
julia> o2 = weight_ordering([1, -1], lex([x, z]))
matrix_ordering([x, z], [1 -1])*lex([x, z])
julia> canonical_matrix(o2)
[1 0 -1]
[0 0 1]
Block Orderings
The concept of block orderings (product orderings) allows one to construct new monomial orderings from already given ones: If $>_1$ and $>_2$ are monomial orderings on $\text{Mon}_s(x_1, \ldots, x_s)$ and $\text{Mon}_{n-s}(x_{s+1}, \ldots, x_n)$, respectively, then the block ordering $> \; = \; (>_1, >_2)$ on $\text{Mon}_n(x)=\text{Mon}_n(x_1, \ldots, x_n)$ is defined by setting
\[x^\alpha>x^\beta \;\Leftrightarrow\; x_1^{\alpha_1}\cdots x_s^{\alpha_s} >_1 x_1^{\beta_1}\cdots x_s^{\beta_s} \;\text{ or }\; \bigl(x_1^{\alpha_1}\cdots x_s^{\alpha_s} = x_1^{\beta_1}\cdots x_s^{\beta_s} \text{ and } x_{s+1}^{\alpha_{s+1}}\cdots x_n^{\alpha_n} >_2 x_{s+1}^{\beta_{s+1}}\cdots x_n^{\beta_n}\bigr).\]
The ordering $(>_1, >_2)$
- is global (local) iff both $>_1$ and $>_2$ are global (local). Mixed orderings arise by choosing one of $>_1$ and $>_2$ global and the other one local,
- is an elimination ordering for the first block of variables iff $>_1$ is global.
- The definition of a block ordering above subdivides $x$ into a block of initial variables and its complementary block of variables. Block orderings for a subdivision of $x$ into any block of variables and its complementary block are defined similarly and have similar properties.
- Inductively, one obtains block orderings composed of more than two individual orderings.
In OSCAR, block orderings are obtained by the concatenation of individual orderings using the *
operator.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[w, x, y, z])
julia> o = degrevlex([w, x])*degrevlex([y, z])
degrevlex([w, x])*degrevlex([y, z])
Elimination Orderings
Let $C[x]=C[x_1, \ldots, x_n]$ be a multivariate polynomial ring with coefficient ring $C$. Fix a subset $\sigma\subset \{1,\dots, n\}$ and write $x_\sigma$ for the set of variables $x_i$ with $i\in\sigma$. An elimination ordering for $x\smallsetminus x_\sigma$ is a monomial ordering $>$ on $\text{Mon}_n(x)$ which satisfies the following property: If $a$ is a monomial involving one of the variables in $x\smallsetminus x_\sigma$ , and $b$ is a monomial depending only on the variables in $x_\sigma$, then $a > b.$ Computing a Gröbner basis of $I$ with respect to such an ordering provides one way of finding the intersection $I\cap C[x_\sigma]$, that is, of eliminating the variables in $x\smallsetminus x_\sigma$ from $I$: The Gröbner basis elements which only depend on the variables in $x_\sigma$ form a Gröbner basis for $I\cap C[x_\sigma]$ with respect to the restriction of $>$ to the set of monomials in $I\cap C[x_\sigma]$.
The lexicographical ordering is an elimination ordering for each initial set of variables $x_1, \dots, x_k$. If only a fixed subset of variables is considered, suitable weight or block orderings as discussed above are more effective. The documentation of the is_elimination_ordering
function below offers examples and non-examples.
Tests on Monomial Orderings
is_elimination_ordering
— Methodis_elimination_ordering(ord::MonomialOrdering, V::Vector{<:MPolyRingElem})
Given a vector V
of polynomials which are variables, return true
if ord
is an elimination ordering for the variables in V
. Return false
, otherwise.
is_elimination_ordering(ord::MonomialOrdering, V:Vector{Int})
Given a vector V
of indices which specify variables, return true
if ord
is an elimination ordering for the specified variables. Return false
, otherwise.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> o1 = lex(R)
lex([w, x, y, z])
julia> is_elimination_ordering(o1, [w, x])
true
julia> o2 = weight_ordering([1, 1, 0, 0], degrevlex(R))
matrix_ordering([w, x, y, z], [1 1 0 0])*degrevlex([w, x, y, z])
julia> is_elimination_ordering(o2, [w, x])
true
julia> o3 = weight_ordering([1, -1, 0, 0], degrevlex(R))
matrix_ordering([w, x, y, z], [1 -1 0 0])*degrevlex([w, x, y, z])
julia> is_elimination_ordering(o3, [w, x])
false
julia> o4 = degrevlex([w, x])*degrevlex([y, z])
degrevlex([w, x])*degrevlex([y, z])
julia> is_elimination_ordering(o4, [w, x])
true
julia> o5 = degrevlex([w, x])*negdegrevlex([y, z])
degrevlex([w, x])*negdegrevlex([y, z])
julia> is_elimination_ordering(o5, [w, x])
true
julia> o6 = negdegrevlex([w, x])*negdegrevlex([y, z])
negdegrevlex([w, x])*negdegrevlex([y, z])
julia> is_elimination_ordering(o6, [w, x])
false
is_global
— Methodis_global(ord::MonomialOrdering)
Return true
if ord
is global, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> o = matrix_ordering(R, [1 1; 0 -1])
matrix_ordering([x, y], [1 1; 0 -1])
julia> is_global(o)
true
is_local
— Methodis_local(ord::MonomialOrdering)
Return true
if ord
is local, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> o = matrix_ordering(R, [-1 -1; 0 -1])
matrix_ordering([x, y], [-1 -1; 0 -1])
julia> is_local(o)
true
is_mixed
— Methodis_mixed(ord::MonomialOrdering)
Return true
if ord
is mixed, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> o = matrix_ordering(R, [1 -1; 0 -1])
matrix_ordering([x, y], [1 -1; 0 -1])
julia> is_mixed(o)
true
Transferring an ordering from another ring
induce
— Methodinduce(vars::AbstractVector{<:MPolyRingElem}, ord::MonomialOrdering)
Return the monomial ordering on the variables vars
induced by transferring the ordering ord
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> S, (a, b, c) = polynomial_ring(GF(5), ["a", "b", "c"]);
julia> ord = degrevlex([x, y])*neglex([z]);
julia> induce([a, b, c], ord)
degrevlex([a, b])*neglex([c])
Module Orderings
Let $R = C[x]=C[x_1, \ldots, x_n]$ be a multivariate polynomial ring with coefficient ring $C$. Referring to the section on free modules for details, we recall that by a free $R$-module we mean a free module of type $R^p$ , where we think of $R^p$ as a free module with a given basis, namely the basis of standard unit vectors. In what follows, $F$ will denote such free $R$-module, and $\{e_1 ,\dots , e_p\}$ will denote the given basis.
A monomial in $F$, involving the basis element $e_i$, is a monomial in $R$ times $e_i$. A term in $F$ is a monomial in $F$ multiplied by a coefficient $c\in C$. Every nonzero element $f\in F$ can be uniquely expressed as the sum of finitely many nonzero terms involving distinct monomials. These terms (monomials) are called the terms (monomials} of $f$.
A monomial ordering on $F$ is a total ordering $>$ on the set of monomials in $F$ such that if $x^\alpha e_i$ and $x^\beta e_j$ are monomials in $F$, and $x^\gamma$ is a monomial in $R$, then
\[x^\alpha e_i > x^\beta e_j \Longrightarrow x^\gamma x^\alpha e_i > x^\gamma x^\beta e_j.\]
In OSCAR, we require in addition that
\[x^\alpha e_i > x^\beta e_i \;\text{ iff }\; x^\alpha e_j > x^\beta e_j \;\text{ for all }\; i,j.\]
Then $>$ induces a unique monomial ordering on $R$ in the obvious way, and we say that $>$ is global, local, or mixed if the induced ordering on $R$ is global, local, or mixed.
One way of getting a monomial ordering on $F$ is to pick a monomial ordering $>$ on $R$, and extend it to $F$. For instance, setting
\[x^\alpha e_i > x^\beta e_j \iff x^\alpha > x^\beta \;\text{ or }\; (x^\alpha = x^\beta \;\text{ and }\; i > j)\]
gives priority to the monomials in $R$, whereas the ordering defined below gives priority to the components of $F$:
\[x^\alpha e_i > x^\beta e_j \iff i > j \;\text{ or }\; (i = j\;\text{ and } x^\alpha > x^\beta).\]
Alternatively, we may wish to use $i < j$ instead of $i > j$ in this definition.
In other words, these orderings are obtained by concatenating a monomial ordering on the monomials of $R$ with a way of ordering the basis vectors of $F$ or vice versa. In OSCAR, we refer to the $i < j$ ordering on the basis vectors as lex, and to the $i > j$ ordering as invlex. And, we use the *
operator for concatenation.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> F = free_module(R, 3)
Free module of rank 3 over R
julia> o1 = degrevlex(R)*invlex(gens(F))
degrevlex([w, x, y, z])*invlex([gen(1), gen(2), gen(3)])
julia> o2 = invlex(gens(F))*degrevlex(R)
invlex([gen(1), gen(2), gen(3)])*degrevlex([w, x, y, z])
The induced ordering on the given polynomial ring is recovered as follows:
induced_ring_ordering
— Methodinduced_ring_ordering(ord::ModuleOrdering)
Return the ring ordering induced by ord
.
Examples
julia> R, (w, x, y, z) = polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> F = free_module(R, 3)
Free module of rank 3 over R
julia> o = invlex(gens(F))*degrevlex(R)
invlex([gen(1), gen(2), gen(3)])*degrevlex([w, x, y, z])
julia> induced_ring_ordering(o)
degrevlex([w, x, y, z])
The comparison function cmp
as well as the tests is_global
, is_local
, and is_mixed
are also available for module orderings.