Polyhedral Complexes
Introduction
Let $\mathbb{F}$ be an ordered field; the default is that $\mathbb{F}=\mathbb{Q}$ is the field of rational numbers and other fields are not yet supported everywhere in the implementation.
A nonempty finite collection $\mathcal{P}$ of polyhedra in $\mathbb{F}^n$, for $n$ fixed, is a polyhedral complex if
- the set $\mathcal{F}$ is closed with respect to taking faces and
- if $C,D\in\mathcal{F}$ then $C\cap D$ is a face of both $C$ and $D$.
Construction
To construct a polyhedral complex, you must pass points of each polyhedron in the polyhedral complex, such that the polyhedron is the convex hull thereof, along with an IncidenceMatrix
encoding which points generate which polyhedron.
polyhedral_complex
— Functionpolyhedral_complex(::T, polyhedra, vr, far_vertices, L) where T<:scalar_types
Arguments
T
:Type
or parentField
of scalar to use, defaults toQQFieldElem
.polyhedra::IncidenceMatrix
: An incidence matrix; there is a 1 at position (i,j) if the ith polytope contains point j and 0 otherwise.vr::AbstractCollection[PointVector]
: The points whose convex hulls make up the polyhedral complex. This matrix also contains the far vertices.far_vertices::Vector{Int}
: Vector containing the indices of the rows corresponding to the far vertices invr
.L::AbstractCollection[RayVector]
: Generators of the lineality space of the polyhedral complex.
A polyhedral complex formed from points, rays, and lineality combined into polyhedra indicated by an incidence matrix, where the columns represent the points and the rows represent the polyhedra.
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]])
2×4 IncidenceMatrix
[1, 2, 3]
[1, 3, 4]
julia> vr = [0 0; 1 0; 1 1; 0 1]
4×2 Matrix{Int64}:
0 0
1 0
1 1
0 1
julia> PC = polyhedral_complex(IM, vr)
Polyhedral complex in ambient dimension 2
Polyhedral complex with rays and lineality:
julia> VR = [0 0 0; 1 0 0; 0 1 0; -1 0 0];
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> L = [0 0 1];
julia> PC = polyhedral_complex(IM, VR, far_vertices, L)
Polyhedral complex in ambient dimension 3
julia> lineality_dim(PC)
1
polyhedral_complex(polytopes::AbstractVector{Polyhedron{T}}) where T<:scalar_types
Assemble a polyhedral complex from a non-empty list of polyhedra.
polyhedral_complex(F::PolyhedralFan)
Turn a polyhedral fan into a polyhedral complex.
polyhedral_complex(TropV::TropicalVariety)
Return the polyhedral complex of a tropical variety.
Auxiliary functions
ambient_dim
— Methodambient_dim(PC::PolyhedralComplex)
Return the ambient dimension of PC
.
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]])
2×4 IncidenceMatrix
[1, 2, 3]
[1, 3, 4]
julia> V = [0 0; 1 0; 1 1; 0 1]
4×2 Matrix{Int64}:
0 0
1 0
1 1
0 1
julia> PC = polyhedral_complex(IM, V)
Polyhedral complex in ambient dimension 2
julia> ambient_dim(PC)
2
codim
— Methodcodim(PC::PolyhedralComplex)
Compute the codimension of a polyhedral complex.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4]]);
julia> far_vertices = [2,3,4];
julia> PC = polyhedral_complex(IM, VR, far_vertices)
A polyhedral complex in ambient dimension 2
julia> codim(PC)
1
dim
— Methoddim(PC::PolyhedralComplex)
Compute the dimension of the polyhedral complex.
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> VR = [0 0; 1 0; 1 1; 0 1];
julia> PC = polyhedral_complex(IM, VR)
Polyhedral complex in ambient dimension 2
julia> dim(PC)
2
f_vector
— Methodf_vector(PC::PolyhedralComplex)
Compute the vector $(f₀,f₁,f₂,...,f_{dim(PC))$` where $f_i$ is the number of faces of $PC$ of dimension $i$.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2,4],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> PC = polyhedral_complex(IM, VR, far_vertices);
julia> f_vector(PC)
3-element Vector{Int64}:
1
3
2
is_embedded
— Methodis_embedded(PC::PolyhedralComplex)
Return true
if PC
is embedded, i.e. if its vertices can be computed as a subset of some $\mathbb{R}^n$.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4]]);
julia> PC = polyhedral_complex(IM, VR)
Polyhedral complex in ambient dimension 2
julia> is_embedded(PC)
true
maximal_polyhedra
— Methodmaximal_polyhedra(PC::PolyhedralComplex)
Return the maximal polyhedra of PC
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]])
2×4 IncidenceMatrix
[1, 2, 3]
[1, 3, 4]
julia> VR = [0 0; 1 0; 1 1; 0 1]
4×2 Matrix{Int64}:
0 0
1 0
1 1
0 1
julia> PC = polyhedral_complex(IM, VR, [2])
Polyhedral complex in ambient dimension 2
julia> maximal_polyhedra(PC)
2-element SubObjectIterator{Polyhedron{QQFieldElem}}:
Polyhedron in ambient dimension 2
Polytope in ambient dimension 2
minimal_faces
— Methodminimal_faces(as, PC::PolyhedralComplex)
Return the minimal faces of a polyhedral complex as a NamedTuple
with two iterators. For a polyhedral complex without lineality, the base_points
are the vertices. If PC
has lineality L
, then every minimal face is an affine translation p+L
, where p
is only unique modulo L
. The return type is a dict, the key :base_points
gives an iterator over such p
, and the key :lineality_basis
lets one access a basis for the lineality space L
of PC
.
See also vertices
and lineality_space
.
Examples
julia> VR = [0 0 0; 1 0 0; 0 1 0; -1 0 0];
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> L = [0 0 1];
julia> PC = polyhedral_complex(IM, VR, far_vertices, L)
Polyhedral complex in ambient dimension 3
julia> MFPC = minimal_faces(PC)
(base_points = PointVector{QQFieldElem}[[0, 0, 0]], lineality_basis = RayVector{QQFieldElem}[[0, 0, 1]])
julia> MFPC.base_points
1-element SubObjectIterator{PointVector{QQFieldElem}}:
[0, 0, 0]
julia> MFPC.lineality_basis
1-element SubObjectIterator{RayVector{QQFieldElem}}:
[0, 0, 1]
n_maximal_polyhedra
— Methodn_maximal_polyhedra(PC::PolyhedralComplex)
Return the number of maximal polyhedra of PC
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]])
2×4 IncidenceMatrix
[1, 2, 3]
[1, 3, 4]
julia> VR = [0 0; 1 0; 1 1; 0 1]
4×2 Matrix{Int64}:
0 0
1 0
1 1
0 1
julia> PC = polyhedral_complex(IM, VR, [2])
Polyhedral complex in ambient dimension 2
julia> n_maximal_polyhedra(PC)
2
n_polyhedra
— Methodn_polyhedra(PC::PolyhedralComplex)
Return the total number of polyhedra in the polyhedral complex PC
.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2,4],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> PC = polyhedral_complex(IM, VR, far_vertices);
julia> n_polyhedra(PC)
6
n_rays
— Methodn_rays(PC::PolyhedralComplex)
Return the number of rays of PC
.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2,4],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> PC = polyhedral_complex(IM, VR, far_vertices);
julia> n_rays(PC)
3
n_vertices
— Methodn_vertices(PC::PolyhedralComplex)
Return the number of vertices of PC
.
Examples
julia> VR = [0 0; 1 0; -1 0; 0 1];
julia> IM = IncidenceMatrix([[1,2,4],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> PC = polyhedral_complex(IM, VR, far_vertices);
julia> n_vertices(PC)
1
polyhedra_of_dim
— Functionpolyhedra_of_dim(PC::PolyhedralComplex, polyhedron_dim::Int)
Return the polyhedra of a given dimension in the polyhedral complex PC
.
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> VR = [0 0; 1 0; 1 1; 0 1];
julia> PC = polyhedral_complex(IM, VR);
julia> P1s = polyhedra_of_dim(PC,1)
5-element SubObjectIterator{Polyhedron{QQFieldElem}}:
Polytope in ambient dimension 2
Polytope in ambient dimension 2
Polytope in ambient dimension 2
Polytope in ambient dimension 2
Polytope in ambient dimension 2
julia> for p in P1s
println(dim(p))
end
1
1
1
1
1
rays
— Methodrays([as::Type{T} = RayVector,] PC::PolyhedralComplex)
Return the rays of PC
. The rays are defined to be the far vertices, i.e. the one-dimensional faces of the recession cones of its polyhedra, so if PC
has lineality, there are no rays.
See also rays_modulo_lineality
and vertices
.
Optional arguments for as
include
RayVector
.
Examples
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> VR = [0 0; 1 0; 1 1; 0 1];
julia> PC = polyhedral_complex(IM, VR, [2])
Polyhedral complex in ambient dimension 2
julia> rays(PC)
1-element SubObjectIterator{RayVector{QQFieldElem}}:
[1, 0]
julia> matrix(QQ, rays(RayVector, PC))
[1 0]
The following complex has no vertices:
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> VR = [0 0 0; 1 0 0; 0 1 0; -1 0 0];
julia> far_vertices = [2,3,4];
julia> L = [0 0 1];
julia> PC = polyhedral_complex(IM, VR, far_vertices, L)
Polyhedral complex in ambient dimension 3
julia> rays(PC)
0-element SubObjectIterator{RayVector{QQFieldElem}}
rays_modulo_lineality
— Methodrays_modulo_lineality(as, PC::PolyhedralComplex)
Return the rays of the recession fan of PC
up to lineality as a NamedTuple
with two iterators. If PC
has lineality L
, then the iterator rays_modulo_lineality
iterates over representatives of the rays of PC/L
. The iterator lineality_basis
gives a basis of the lineality space L
.
See also rays
and lineality_space
.
Examples
julia> VR = [0 0 0; 1 0 0; 0 1 0; -1 0 0];
julia> IM = IncidenceMatrix([[1,2,3],[1,3,4]]);
julia> far_vertices = [2,3,4];
julia> L = [0 0 1];
julia> PC = polyhedral_complex(IM, VR, far_vertices, L)
Polyhedral complex in ambient dimension 3
julia> RML = rays_modulo_lineality(PC)
(rays_modulo_lineality = RayVector{QQFieldElem}[[1, 0, 0], [0, 1, 0], [-1, 0, 0]], lineality_basis = RayVector{QQFieldElem}[[0, 0, 1]])
julia> RML.rays_modulo_lineality
3-element SubObjectIterator{RayVector{QQFieldElem}}:
[1, 0, 0]
[0, 1, 0]
[-1, 0, 0]
julia> RML.lineality_basis
1-element SubObjectIterator{RayVector{QQFieldElem}}:
[0, 0, 1]
vertices
— Methodvertices(TropV::TropicalVariety)
Return the vertices of TropV
.