Elements
Elements in orders have two representations: they can be viewed as elements in the $\mathbf Z^n$ giving the coefficients wrt to the order basis where they are elements in. On the other hand, as every order is in a field, they also have a representation as number field elements. Since, asymptotically, operations are more efficient in the field (due to fast polynomial arithmetic) than in the order, the primary representation is that as a field element.
Creation
Elements are constructed either as linear combinations of basis elements or via explicit coercion. Elements will be of type AbsNumFieldOrderElem
, the type if actually parametrized by the type of the surrounding field and the type of the field elements. E.g. the type of any element in any order of an absolute simple field will be AbsSimpleNumFieldOrderElem
AbsNumFieldOrder
— Type (O::NumFieldOrder)(a::NumFieldElem, check::Bool = true) -> NumFieldOrderElem
Given an element $a$ of the ambient number field of $\mathcal O$, this function coerces the element into $\mathcal O$. It will be checked that $a$ is contained in $\mathcal O$ if and only if check
is true
.
(O::NumFieldOrder)(a::NumFieldOrderElem, check::Bool = true) -> NumFieldOrderElem
Given an element $a$ of some order in the ambient number field of $\mathcal O$, this function coerces the element into $\mathcal O$. It will be checked that $a$ is contained in $\mathcal O$ if and only if check
is true
.
(O::NumFieldOrder)(a::IntegerUnion) -> NumFieldOrderElem
Given an element $a$ of type ZZRingElem
or Integer
, this function coerces the element into $\mathcal O$.
(O::AbsNumFieldOrder)(arr::Vector{ZZRingElem})
Returns the element of $\mathcal O$ with coefficient vector arr
.
(O::AbsNumFieldOrder)(arr::Vector{Integer})
Returns the element of $\mathcal O$ with coefficient vector arr
.
Basic properties
parent
— Methodparent(a::NumFieldOrderElem) -> NumFieldOrder
Returns the order of which $a$ is an element.
parent(a::MatRingElem{T}) where T <: NCRingElement
Return the parent object of the given matrix.
elem_in_nf
— Methodelem_in_nf(a::NumFieldOrderElem) -> NumFieldElem
Returns the element $a$ considered as an element of the ambient number field.
coordinates
— Methodcoordinates(a::AbsNumFieldOrderElem) -> Vector{ZZRingElem}
Returns the coefficient vector of $a$ with respect to the basis of the order.
discriminant
— Methoddiscriminant(B::Vector{NumFieldOrderElem})
Returns the discriminant of the family $B$ of algebraic numbers, i.e. $det((tr(B[i]*B[j]))_{i, j})^2$.
discriminant(E::EllipticCurve) -> FieldElem
Return the discriminant of $E$.
discriminant(C::HypellCrv{T}) -> T
Compute the discriminant of $C$.
discriminant(O::AlgssRelOrd)
Returns the discriminant of $O$.
discriminant(g::Vector)
Compute the product of all differences of distinct elements in the array.
==
— Method==(x::NumFieldOrderElem, y::NumFieldOrderElem) -> Bool
Returns whether $x$ and $y$ are equal.
Arithmetic
All the usual arithmetic operatinos are defined:
-(::NUmFieldOrdElem)
+(::NumFieldOrderElem, ::NumFieldOrderElem)
-(::NumFieldOrderElem, ::NumFieldOrderElem)
*(::NumFieldOrderElem, ::NumFieldOrderElem)
^(::NumFieldOrderElem, ::Int)
mod(::AbsNumFieldOrderElem, ::Int)
mod_sym(::NumFieldOrderElem, ::ZZRingElem)
powermod(::AbsNumFieldOrderElem, ::ZZRingElem, ::Int)
Miscellaneous
representation_matrix
— Methodrepresentation_matrix(a::AbsNumFieldOrderElem) -> ZZMatrix
Returns the representation matrix of the element $a$.
representation_matrix
— Methodrepresentation_matrix(a::AbsNumFieldOrderElem, K::AbsSimpleNumField) -> FakeFmpqMat
Returns the representation matrix of the element $a$ considered as an element of the ambient number field $K$. It is assumed that $K$ is the ambient number field of the order of $a$.
tr
— Methodtr(a::NumFieldOrderElem)
Returns the trace of $a$ as an element of the base ring.
norm
— Methodnorm(a::NumFieldOrderElem)
Returns the norm of $a$ as an element in the base ring.
absolute_norm
— Methodabsolute_norm(a::NumFieldOrderElem) -> ZZRingElem
Return the absolute norm as an integer.
absolute_tr
— Methodabsolute_tr(a::NumFieldOrderElem) -> ZZRingElem
Return the absolute trace as an integer.
rand
— Methodrand(O::AbsSimpleNumFieldOrder, n::IntegerUnion) -> AbsNumFieldOrderElem
Computes a coefficient vector with entries uniformly distributed in $\{-n,\dotsc,-1,0,1,\dotsc,n\}$ and returns the corresponding element of the order $\mathcal O$.
minkowski_map
— Methodminkowski_map(a::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}
Returns the image of $a$ under the Minkowski embedding. Every entry of the array returned is of type ArbFieldElem
with radius less then 2^-abs_tol
.
conjugates_arb
— Methodconjugates_arb(x::NumFieldOrderElem, abs_tol::Int) -> Vector{AcbFieldElem}
Compute the conjugates of $x$ as elements of type AcbFieldElem
. Recall that we order the complex conjugates $\sigma_{r+1}(x),...,\sigma_{r+2s}(x)$ such that $\sigma_{i}(x) = \overline{\sigma_{i + s}(x)}$ for $r + 2 \leq i \leq r + s$.
Every entry $y$ of the array returned satisfies radius(real(y)) < 2^-abs_tol
, radius(imag(y)) < 2^-abs_tol
respectively.
conjugates_arb_log
— Methodconjugates_arb_log(x::NumFieldOrderElem, abs_tol::Int) -> Vector{ArbFieldElem}
Returns the elements $(\log(\lvert \sigma_1(x) \rvert),\dotsc,\log(\lvert\sigma_r(x) \rvert), \dotsc,2\log(\lvert \sigma_{r+1}(x) \rvert),\dotsc, 2\log(\lvert \sigma_{r+s}(x)\rvert))$ as elements of type ArbFieldElem
radius less then 2^-abs_tol
.
t2
— Methodt2(x::NumFieldOrderElem, abs_tol::Int = 32) -> ArbFieldElem
Return the $T_2$-norm of $x$. The radius of the result will be less than 2^-abs_tol
.
minpoly
— Methodminpoly(M::MatElem{T}, charpoly_only::Bool = false) where {T <: RingElement}
minpoly(S::PolyRing{T}, M::MatElem{T}, charpoly_only::Bool = false) where {T <: RingElement}
Return the minimal polynomial $p$ of the square matrix $M$. If a polynomial ring $S$ over the same base ring as $Y$ is supplied, the resulting polynomial is an element of it.
Examples
julia> R = GF(13)
Finite field F_13
julia> S, y = polynomial_ring(R, :y)
(Univariate polynomial ring in y over finite field F_13, y)
julia> M = R[7 6 1;
7 7 5;
8 12 5]
[7 6 1]
[7 7 5]
[8 12 5]
julia> A = minpoly(S, M)
y^2 + 10*y
julia> A = minpoly(M)
x^2 + 10*x
minpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
The minimal polynomial of $a$.
minpoly(S::Ring, M::MatRingElem{T}, charpoly_only::Bool = false) where {T <: RingElement}
Return the minimal polynomial $p$ of the matrix $M$. The polynomial ring $S$ of the resulting polynomial must be supplied and the matrix must be square.
charpoly
— Methodcharpoly(Y::MatrixElem{T}) where {T <: RingElement}
charpoly(S::PolyRing{T}, Y::MatrixElem{T}) where {T <: RingElement}
Return the characteristic polynomial $p$ of the square matrix $Y$. If a polynomial ring $S$ over the same base ring as $Y$ is supplied, the resulting polynomial is an element of it.
Examples
julia> R, = residue_ring(ZZ, 7);
julia> S = matrix_space(R, 4, 4)
Matrix space of 4 rows and 4 columns
over residue ring of integers modulo 7
julia> T, y = polynomial_ring(R, :y)
(Univariate polynomial ring in y over residue ring, y)
julia> M = S([R(1) R(2) R(4) R(3); R(2) R(5) R(1) R(0);
R(6) R(1) R(3) R(2); R(1) R(1) R(3) R(5)])
[1 2 4 3]
[2 5 1 0]
[6 1 3 2]
[1 1 3 5]
julia> A = charpoly(T, M)
y^4 + 2*y^2 + 6*y + 2
julia> A = charpoly(M)
x^4 + 2*x^2 + 6*x + 2
charpoly(a::AbsNumFieldOrderElem) -> ZZPolyRingElem
charpoly(a::AbsNumFieldOrderElem, FlintZZ) -> ZZPolyRingElem
The characteristic polynomial of $a$.
factor
— Methodfactor(a::AbsSimpleNumFieldOrderElem) -> Fac{AbsSimpleNumFieldOrderElem}
Computes a factorization of $a$ into irreducible elements. The return value is a factorization fac
, which satisfies a = unit(fac) * prod(p^e for (p, e) in fac)
.
The function requires that $a$ is non-zero and that all prime ideals containing $a$ are principal, which is for example satisfied if class group of the order of $a$ is trivial.
denominator
— Methoddenominator(a::NumFieldElem, O::AbsSimpleNumFieldOrder) -> ZZRingElem
Returns the smallest positive integer $k$ such that $k \cdot a$ is contained in $\mathcal O$.
discriminant
— Methoddiscriminant(B::Vector{NumFieldOrderElem})
Returns the discriminant of the family $B$ of algebraic numbers, i.e. $det((tr(B[i]*B[j]))_{i, j})^2$.
discriminant(E::EllipticCurve) -> FieldElem
Return the discriminant of $E$.
discriminant(C::HypellCrv{T}) -> T
Compute the discriminant of $C$.
discriminant(O::AlgssRelOrd)
Returns the discriminant of $O$.
discriminant(g::Vector)
Compute the product of all differences of distinct elements in the array.