Operations on Modules
Subquotients Related to Homomorphisms
Kernel
kernel
— Methodkernel(a::ModuleFPHom)
Return the kernel of a
as an object of type SubquoModule
.
Additionally, if K
denotes this object, return the inclusion map K
$\to$ domain(a)
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 3);
julia> G = free_module(R, 2);
julia> W = R[y 0; x y; 0 z]
[y 0]
[x y]
[0 z]
julia> a = hom(F, G, W);
julia> K, incl = kernel(a);
julia> K
Submodule with 1 generator
1 -> x*z*e[1] - y*z*e[2] + y^2*e[3]
represented as subquotient with no relations.
julia> incl
Map with following data
Domain:
=======
Submodule with 1 generator
1 -> x*z*e[1] - y*z*e[2] + y^2*e[3]
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 3 over R
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 1);
julia> A = R[x; y]
[x]
[y]
julia> B = R[x^2; y^3; z^4]
[x^2]
[y^3]
[z^4]
julia> M = SubquoModule(F, A, B)
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> N = M;
julia> V = [y^2*N[1], x*N[2]]
2-element Vector{SubquoModuleElem{QQMPolyRingElem}}:
x*y^2*e[1]
x*y*e[1]
julia> a = hom(M, N, V);
julia> K, incl = kernel(a);
julia> K
Subquotient of Submodule with 3 generators
1 -> (-x + y^2)*e[1]
2 -> x*y*e[1]
3 -> -x*y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> incl
Map with following data
Domain:
=======
Subquotient of Submodule with 3 generators
1 -> (-x + y^2)*e[1]
2 -> x*y*e[1]
3 -> -x*y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
Codomain:
=========
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> Rg, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = graded_free_module(Rg, 1);
julia> A = Rg[x; y];
julia> B = Rg[x^2; y^3; z^4];
julia> M = SubquoModule(F, A, B)
Graded subquotient of submodule of F generated by
1 -> x*e[1]
2 -> y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> N = M;
julia> V = [y^2*N[1], x^2*N[2]];
julia> a = hom(M, N, V)
M -> M
x*e[1] -> x*y^2*e[1]
y*e[1] -> x^2*y*e[1]
Graded module homomorphism of degree [2]
julia> kernel(a)
(Graded subquotient of submodule of F generated by
1 -> y*e[1]
2 -> -x*y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1], Graded subquotient of submodule of F generated by
1 -> y*e[1]
2 -> -x*y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1] -> M
y*e[1] -> y*e[1]
-x*y*e[1] -> -x*y*e[1]
Homogeneous module homomorphism)
Image
image
— Methodimage(a::ModuleFPHom)
Return the image of a
as an object of type SubquoModule
.
Additionally, if I
denotes this object, return the inclusion map I
$\to$ codomain(a)
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 3);
julia> G = free_module(R, 2);
julia> W = R[y 0; x y; 0 z]
[y 0]
[x y]
[0 z]
julia> a = hom(F, G, W);
julia> I, incl = image(a);
julia> I
Submodule with 3 generators
1 -> y*e[1]
2 -> x*e[1] + y*e[2]
3 -> z*e[2]
represented as subquotient with no relations.
julia> incl
Map with following data
Domain:
=======
Submodule with 3 generators
1 -> y*e[1]
2 -> x*e[1] + y*e[2]
3 -> z*e[2]
represented as subquotient with no relations.
Codomain:
=========
Free module of rank 2 over R
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 1);
julia> A = R[x; y]
[x]
[y]
julia> B = R[x^2; y^3; z^4]
[x^2]
[y^3]
[z^4]
julia> M = SubquoModule(F, A, B)
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> N = M;
julia> V = [y^2*N[1], x*N[2]]
2-element Vector{SubquoModuleElem{QQMPolyRingElem}}:
x*y^2*e[1]
x*y*e[1]
julia> a = hom(M, N, V);
julia> I, incl = image(a);
julia> I
Subquotient of Submodule with 2 generators
1 -> x*y^2*e[1]
2 -> x*y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> incl
Map with following data
Domain:
=======
Subquotient of Submodule with 2 generators
1 -> x*y^2*e[1]
2 -> x*y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
Codomain:
=========
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> Rg, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = graded_free_module(Rg, 1);
julia> A = Rg[x; y];
julia> B = Rg[x^2; y^3; z^4];
julia> M = SubquoModule(F, A, B)
Graded subquotient of submodule of F generated by
1 -> x*e[1]
2 -> y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> N = M;
julia> V = [y^2*N[1], x^2*N[2]];
julia> a = hom(M, N, V)
M -> M
x*e[1] -> x*y^2*e[1]
y*e[1] -> x^2*y*e[1]
Graded module homomorphism of degree [2]
julia> image(a)
(Graded subquotient of submodule of F generated by
1 -> x*y^2*e[1]
2 -> x^2*y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1], Graded subquotient of submodule of F generated by
1 -> x*y^2*e[1]
2 -> x^2*y*e[1]
by submodule of F generated by
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1] -> M
x*y^2*e[1] -> x*y^2*e[1]
x^2*y*e[1] -> x^2*y*e[1]
Homogeneous module homomorphism)
Cokernel
cokernel
— Methodcokernel(a::ModuleFPHom)
Return the cokernel of a
as an object of type SubquoModule
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 3);
julia> G = free_module(R, 2);
julia> W = R[y 0; x y; 0 z]
[y 0]
[x y]
[0 z]
julia> a = hom(F, G, W);
julia> cokernel(a)
Subquotient of Submodule with 2 generators
1 -> e[1]
2 -> e[2]
by Submodule with 3 generators
1 -> y*e[1]
2 -> x*e[1] + y*e[2]
3 -> z*e[2]
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 1);
julia> A = R[x; y]
[x]
[y]
julia> B = R[x^2; y^3; z^4]
[x^2]
[y^3]
[z^4]
julia> M = SubquoModule(F, A, B)
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 3 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
julia> N = M;
julia> V = [y^2*N[1], x*N[2]]
2-element Vector{SubquoModuleElem{QQMPolyRingElem}}:
x*y^2*e[1]
x*y*e[1]
julia> a = hom(M, N, V);
julia> cokernel(a)
Subquotient of Submodule with 2 generators
1 -> x*e[1]
2 -> y*e[1]
by Submodule with 5 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
3 -> z^4*e[1]
4 -> x*y^2*e[1]
5 -> x*y*e[1]
julia> Rg, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = graded_free_module(Rg, 3);
julia> G = graded_free_module(Rg, 2);
julia> W = Rg[y 0; x y; 0 z]
[y 0]
[x y]
[0 z]
julia> a = hom(F, G, W)
F -> G
e[1] -> y*e[1]
e[2] -> x*e[1] + y*e[2]
e[3] -> z*e[2]
Graded module homomorphism of degree [1]
julia> M = cokernel(a)
Graded subquotient of submodule of G generated by
1 -> e[1]
2 -> e[2]
by submodule of G generated by
1 -> y*e[1]
2 -> x*e[1] + y*e[2]
3 -> z*e[2]
cokernel(F::FreeMod{R}, A::MatElem{R}) where R
Return the cokernel of A
as an object of type SubquoModule
with ambient free module F
.
Examples
julia> R, (x,y,z) = polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = free_module(R, 2)
Free module of rank 2 over R
julia> A = R[x y; 2*x^2 3*y^2]
[ x y]
[2*x^2 3*y^2]
julia> M = cokernel(F, A)
Subquotient of Submodule with 2 generators
1 -> e[1]
2 -> e[2]
by Submodule with 2 generators
1 -> x*e[1] + y*e[2]
2 -> 2*x^2*e[1] + 3*y^2*e[2]
julia> ambient_free_module(M) === F
true
julia> Rg, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = graded_free_module(Rg, [8,8])
Graded free module Rg^2([-8]) of rank 2 over Rg
julia> A = Rg[x y; 2*x^2 3*y^2]
[ x y]
[2*x^2 3*y^2]
julia> M = cokernel(F, A)
Graded subquotient of submodule of F generated by
1 -> e[1]
2 -> e[2]
by submodule of F generated by
1 -> x*e[1] + y*e[2]
2 -> 2*x^2*e[1] + 3*y^2*e[2]
julia> ambient_free_module(M) === F
true
julia> degrees_of_generators(M)
2-element Vector{FinGenAbGroupElem}:
[8]
[8]
Direct Sums and Products
direct_sum
— Methoddirect_sum(M::ModuleFP{T}...; task::Symbol = :sum) where T
Given modules $M_1\dots M_n$, say, return the direct sum $\bigoplus_{i=1}^n M_i$.
Additionally, return
- a vector containing the canonical injections $M_i\to\bigoplus_{i=1}^n M_i$ if
task = :sum
(default), - a vector containing the canonical projections $\bigoplus_{i=1}^n M_i\to M_i$ if
task = :prod
, - two vectors containing the canonical injections and projections, respectively, if
task = :both
, - none of the above maps if
task = :none
.
direct_product
— Methoddirect_product(M::ModuleFP{T}...; task::Symbol = :prod) where T
Given modules $M_1\dots M_n$, say, return the direct product $\prod_{i=1}^n M_i$.
Additionally, return
- a vector containing the canonical projections $\prod_{i=1}^n M_i\to M_i$ if
task = :prod
(default), - a vector containing the canonical injections $M_i\to\prod_{i=1}^n M_i$ if
task = :sum
, - two vectors containing the canonical projections and injections, respectively, if
task = :both
, - none of the above maps if
task = :none
.
Truncation
truncate
— Functiontruncate(I::ModuleFP, g::FinGenAbGroupElem, task::Symbol=:with_morphism)
Given a finitely presented graded module M
over a $\mathbb Z$-graded multivariate polynomial ring with positive weights, return the truncation of M
at degree g
.
Put more precisely, return the truncation as an object of type SubquoModule
.
Additionally, if N
denotes this object,
- return the inclusion map
N
$\to$M
iftask = :with_morphism
(default), - return and cache the inclusion map
N
$\to$M
iftask = :cache_morphism
, - do none of the above if
task = :none
.
If task = :only_morphism
, return only the inclusion map.
truncate(M::ModuleFP, d::Int, task::Symbol = :with_morphism)
Given a module M
as above, and given an integer d
, convert d
into an element g
of the grading group of base_ring(I)
and proceed as above.
Examples
julia> R, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> F = graded_free_module(R, 1)
Graded free module R^1([0]) of rank 1 over R
julia> V = [x*F[1]; y^4*F[1]; z^5*F[1]];
julia> M, _ = quo(F, V);
julia> M[1]
e[1]
julia> MT = truncate(M, 3);
julia> MT[1]
Graded subquotient of submodule of F generated by
1 -> z^3*e[1]
2 -> y*z^2*e[1]
3 -> y^2*z*e[1]
4 -> y^3*e[1]
5 -> x*z^2*e[1]
6 -> x*y*z*e[1]
7 -> x*y^2*e[1]
8 -> x^2*z*e[1]
9 -> x^2*y*e[1]
10 -> x^3*e[1]
by submodule of F generated by
1 -> x*e[1]
2 -> y^4*e[1]
3 -> z^5*e[1]
Twists
In the graded case, we have:
twist
— Methodtwist(M::ModuleFP{T}, g::FinGenAbGroupElem) where {T<:MPolyDecRingElem}
Return the twisted module M(g)
.
twist(M::ModuleFP{T}, W::Vector{<:IntegerUnion}) where {T<:MPolyDecRingElem}
Given a module M
over a $\mathbb Z^m$-graded polynomial ring and a vector W
of $m$ integers, convert W
into an element g
of the grading group of the ring and proceed as above.
twist(M::ModuleFP{T}, d::IntegerUnion) where {T<:MPolyDecRingElem}
Given a module M
over a $\mathbb Z$-graded polynomial ring and an integer d
, convert d
into an element g
of the grading group of the ring and proceed as above.
Examples
julia> R, (x, y) = graded_polynomial_ring(QQ, ["x", "y"]);
julia> I = ideal(R, [zero(R)])
Ideal generated by
0
julia> M = quotient_ring_as_module(I)
Graded submodule of R^1
1 -> e[1]
represented as subquotient with no relations
julia> degree(gen(M, 1))
[0]
julia> N = twist(M, 2)
Graded submodule of R^1
1 -> e[1]
represented as subquotient with no relations
julia> degree(gen(N, 1))
[-2]