Ideals in Multivariate Rings
Types
The OSCAR type for ideals in multivariate polynomial rings is of parametrized form MPolyIdeal{T}
, where T
is the element type of the polynomial ring.
Constructors
ideal
— Methodideal(R::MPolyRing, V::Vector)
Given a vector V
of polynomials in R
, return the ideal of R
generated by these polynomials.
In the graded case, the entries of V
must be homogeneous.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x*y-3*x,y^3-2*x^2*y])
Ideal generated by
x*y - 3*x
-2*x^2*y + y^3
julia> typeof(I)
MPolyIdeal{QQMPolyRingElem}
julia> S, (x, y) = graded_polynomial_ring(QQ, ["x", "y"], [1, 2])
(Graded multivariate polynomial ring in 2 variables over QQ, MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[x, y])
julia> J = ideal(S, [(x^2+y)^2])
Ideal generated by
x^4 + 2*x^2*y + y^2
julia> typeof(J)
MPolyIdeal{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}
Data Associated to Ideals
Basic Data
If I
is an ideal of a multivariate polynomial ring R
, then
base_ring(I)
refers toR
,gens(I)
to the generators ofI
,number_of_generators(I)
/ngens(I)
to the number of these generators, andgen(I, k)
as well asI[k]
to thek
-th such generator.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> base_ring(I)
Multivariate polynomial ring in 2 variables x, y
over rational field
julia> gens(I)
3-element Vector{QQMPolyRingElem}:
x^2
x*y
y^2
julia> number_of_generators(I)
3
julia> gen(I, 2)
x*y
Dimension
dim
— Methoddim(I::MPolyIdeal)
Return the Krull dimension of I
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [y-x^2, x-z^3])
Ideal generated by
-x^2 + y
x - z^3
julia> dim(I)
1
Codimension
codim
— Methodcodim(TropV::TropicalVariety)
In the graded case, we additionally have:
Minimal Sets of Generators
minimal_generating_set
— Methodminimal_generating_set(I::MPolyIdeal{<:MPolyDecRingElem})
Given a (homogeneous) ideal I
in a graded multivariate polynomial ring over a field, return an array containing a minimal set of generators of I
. If I
is the zero ideal, an empty list is returned.
Examples
julia> R, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> V = [x, z^2, x^3+y^3, y^4, y*z^5];
julia> I = ideal(R, V)
Ideal generated by
x
z^2
x^3 + y^3
y^4
y*z^5
julia> minimal_generating_set(I)
3-element Vector{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}:
x
z^2
y^3
julia> I = ideal(R, zero(R))
Ideal generated by
0
julia> minimal_generating_set(I)
MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[]
Castelnuovo-Mumford Regularity
cm_regularity
— Methodcm_regularity(I::MPolyIdeal)
Given a (homogeneous) ideal I
in a standard $\mathbb Z$-graded multivariate polynomial ring with coefficients in a field, return the Castelnuovo-Mumford regularity of I.
Examples
julia> R, (w, x, y, z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> I = ideal(R, [y^2*z − x^2*w, z^4 − x*w^3]);
julia> cm_regularity(I)
6
julia> minimal_betti_table(I);
Degree
degree
— Methoddegree(I::MPolyIdeal)
Given a (homogeneous) ideal I
in a standard $\mathbb Z$-graded multivariate polynomial ring, return the degree of I
(that is, the degree of the quotient of base_ring(I)
modulo I
). Otherwise, return the degree of the homogenization of I
with respect to the standard $\mathbb Z$-grading.
Geometrically, the degree of a homogeneous ideal as above is the number of intersection points of its projective variety with a generic linear subspace of complementary dimension (counted with multiplicities). See also [MS21].
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [y-x^2, x-z^3])
Ideal generated by
-x^2 + y
x - z^3
julia> degree(I)
6
Operations on Ideals
Simple Ideal Operations
Powers of Ideal
^
— Method^(I::MPolyIdeal, m::Int)
Return the m
-th power of I
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [x, y])
Ideal generated by
x
y
julia> I^3
Ideal generated by
x^3
x^2*y
x*y^2
y^3
Sum of Ideals
+
— Method+(I::MPolyIdeal{T}, J::MPolyIdeal{T}) where T
Return the sum of I
and J
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [x, y])
Ideal generated by
x
y
julia> J = ideal(R, [z^2])
Ideal generated by
z^2
julia> I+J
Ideal generated by
x
y
z^2
Product of Ideals
*
— Method*(I::MPolyIdeal{T}, J::MPolyIdeal{T}) where T
Return the product of I
and J
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [x, y])
Ideal generated by
x
y
julia> J = ideal(R, [z^2])
Ideal generated by
z^2
julia> I*J
Ideal generated by
x*z^2
y*z^2
Intersection of Ideals
intersect
— Methodintersect(I::MPolyIdeal{T}, Js::MPolyIdeal{T}...) where T
intersect(V::Vector{MPolyIdeal{T}}) where T
Return the intersection of two or more ideals.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x, y])^2;
julia> J = ideal(R, [y^2-x^3+x]);
julia> intersect(I, J)
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> intersect([I, J])
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
Ideal Quotients
Given two ideals $I, J$ of a ring $R$, the ideal quotient of $I$ by $J$ is the ideal
\[I:J= \bigl\{f \in R\:\big|\: f J \subset I\bigr\}\subset R.\]
quotient
— Methodquotient(I::MPolyIdeal{T}, J::MPolyIdeal{T}) where T
Return the ideal quotient of I
by J
. Alternatively, use I:J
.
quotient(I::MPolyIdeal{T}, f::MPolyRingElem{T}) where T
Return the ideal quotient of I
by the ideal generated by f
. Alternatively, use I:f
.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [x^4+x^2*y*z+y^3*z, y^4+x^3*z+x*y^2*z, x^3*y+x*y^3])
Ideal generated by
x^4 + x^2*y*z + y^3*z
x^3*z + x*y^2*z + y^4
x^3*y + x*y^3
julia> J = ideal(R, [x, y, z])^2
Ideal generated by
x^2
x*y
x*z
y^2
y*z
z^2
julia> L = quotient(I, J)
Ideal generated by
x^3*z + x*y^2*z + y^4
x^3*y + x*y^3
x^4 + x^2*y*z + y^3*z
x^3*z^2 - x^2*y*z^2 + x*y^2*z^2 - y^3*z^2
x^2*y^2*z - x^2*y*z^2 - y^3*z^2
x^3*z^2 + x^2*y^3 - x^2*y^2*z + x*y^2*z^2
julia> I:J
Ideal generated by
x^3*z + x*y^2*z + y^4
x^3*y + x*y^3
x^4 + x^2*y*z + y^3*z
x^3*z^2 - x^2*y*z^2 + x*y^2*z^2 - y^3*z^2
x^2*y^2*z - x^2*y*z^2 - y^3*z^2
x^3*z^2 + x^2*y^3 - x^2*y^2*z + x*y^2*z^2
julia> I:x
Ideal generated by
x^2*y + y^3
x^3*z + x*y^2*z + y^4
x^2*z^2 + x*y^3 - x*y^2*z + y^2*z^2
x^4
x^3*z^2 - x^2*z^3 + 2*x*y^2*z^2 - y^2*z^3
-x^2*z^4 + x*y^2*z^3 - y^2*z^4
Saturation
Given two ideals $I, J$ of a ring $R$, the saturation of $I$ with respect to $J$ is the ideal
\[I:J^{\infty} = \bigl\{ f \in R \:\big|\: f J^k \!\subset I {\text{ for some }}k\geq 1 \bigr\} = \textstyle{\bigcup\limits_{k=1}^{\infty} (I:J^k)}.\]
saturation
— Methodsaturation(I::MPolyIdeal{T}, J::MPolyIdeal{T} = ideal(base_ring(I), gens(base_ring(I)))) where T
Return the saturation of I
with respect to J
. If the second ideal J
is not given, the ideal generated by the generators (variables) of base_ring(I)
is used.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [z^3, y*z^2, x*z^2, y^2*z, x*y*z, x^2*z, x*y^2, x^2*y])
Ideal generated by
z^3
y*z^2
x*z^2
y^2*z
x*y*z
x^2*z
x*y^2
x^2*y
julia> J = ideal(R, [x, y, z])
Ideal generated by
x
y
z
julia> K = saturation(I, J)
Ideal generated by
z
x*y
julia> K = saturation(I)
Ideal generated by
z
x*y
saturation_with_index
— Methodsaturation_with_index(I::MPolyIdeal{T}, J::MPolyIdeal{T} = ideal(base_ring(I), gens(base_ring(I)))) where T
Return $I:J^{\infty}$ together with the smallest integer $m$ such that $I:J^m = I:J^{\infty}$. If the second ideal J
is not given, the ideal generated by the generators (variables) of base_ring(I)
is used.
Examples
julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> I = ideal(R, [z^3, y*z^2, x*z^2, y^2*z, x*y*z, x^2*z, x*y^2, x^2*y])
Ideal generated by
z^3
y*z^2
x*z^2
y^2*z
x*y*z
x^2*z
x*y^2
x^2*y
julia> J = ideal(R, [x, y, z])
Ideal generated by
x
y
z
julia> K, m = saturation_with_index(I, J)
(Ideal (z, x*y), 2)
julia> K, m = saturation_with_index(I)
(Ideal (z, x*y), 2)
Elimination
eliminate
— Methodeliminate(I::MPolyIdeal{T}, V::Vector{T}) where T <: MPolyRingElem
Given a vector V
of polynomials which are variables, these variables are eliminated from I
. That is, return the ideal generated by all polynomials in I
which only involve the remaining variables.
eliminate(I::MPolyIdeal, V::AbstractVector{Int})
Given a vector V
of indices which specify variables, these variables are eliminated from I
. That is, return the ideal generated by all polynomials in I
which only involve the remaining variables.
The return value is an ideal of the original ring.
Examples
julia> R, (t, x, y, z) = polynomial_ring(QQ, ["t", "x", "y", "z"])
(Multivariate polynomial ring in 4 variables over QQ, QQMPolyRingElem[t, x, y, z])
julia> I = ideal(R, [t-x, t^2-y, t^3-z])
Ideal generated by
t - x
t^2 - y
t^3 - z
julia> A = [t]
1-element Vector{QQMPolyRingElem}:
t
julia> TC = eliminate(I, A)
Ideal generated by
-x*z + y^2
x*y - z
x^2 - y
julia> A = [1]
1-element Vector{Int64}:
1
julia> TC = eliminate(I, A)
Ideal generated by
-x*z + y^2
x*y - z
x^2 - y
julia> base_ring(TC)
Multivariate polynomial ring in 4 variables t, x, y, z
over rational field
Truncation
truncate
— Methodtruncate(I::MPolyIdeal, g::FinGenAbGroupElem)
Given a (homogeneous) ideal I
in a $\mathbb Z$-graded multivariate polynomial ring with positive weights, return the truncation of I
at degree g
.
truncate(I::MPolyIdeal, d::Int)
Given an ideal I
as above, and given an integer d
, convert d
into an element g
of the grading group of base_ring(I)
and proceed as above.
Examples
julia> R, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"]);
julia> I = ideal(R, [x, y^4, z^6])
Ideal generated by
x
y^4
z^6
julia> truncate(I, 3)
Ideal generated by
x*z^2
x*y*z
x*y^2
x^2*z
x^2*y
x^3
y^4
z^6
julia> R, (x, y, z) = graded_polynomial_ring(QQ, ["x", "y", "z"], [3,2,1]);
julia> I = ideal(R, [x, y^4, z^6])
Ideal generated by
x
y^4
z^6
julia> truncate(I, 3)
Ideal generated by
x
y^4
z^6
julia> truncate(I, 4)
Ideal generated by
x*z
z^6
y^4
Tests on Ideals
Basic Tests
is_zero
— Methodis_zero(I::MPolyIdeal)
Return true
if I
is the zero ideal, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, y-x^2)
Ideal generated by
-x^2 + y
julia> is_zero(I)
false
is_one
— Methodis_one(I::MPolyIdeal)
Return true
if I
is generated by 1
, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x, x + y, y - 1])
Ideal generated by
x
x + y
y - 1
julia> is_one(I)
true
is_monomial
— Methodis_monomial(f::MPolyRingElem)
Return true
if f
is a monomial, false
otherwise.
is_monomial(I::MPolyIdeal)
Return true
if I
can be generated by monomials, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> f = 2*x+y
2*x + y
julia> g = y
y
julia> is_monomial(f)
false
julia> is_monomial(g)
true
julia> is_monomial(ideal(R, [f, g]))
true
Containment of Ideals
is_subset
— Methodis_subset(I::MPolyIdeal, J::MPolyIdeal)
Return true
if I
is contained in J
, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x^2])
Ideal generated by
x^2
julia> J = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> is_subset(I, J)
true
Equality of Ideals
==
— Method==(I::MPolyIdeal, J::MPolyIdeal)
Return true
if I
is equal to J
, false
otherwise.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x^2])
Ideal generated by
x^2
julia> J = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> I == J
false
Ideal Membership
ideal_membership
— Methodideal_membership(f::T, I::MPolyIdeal{T}) where T
Return true
if f
is contained in I
, false
otherwise. Alternatively, use f in I
.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> f = x^2
x^2
julia> I = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> ideal_membership(f, I)
true
julia> g = x
x
julia> g in I
false
Radical Membership
radical_membership
— Methodradical_membership(f::T, I::MPolyIdeal{T}) where T
Return true
if f
is contained in the radical of I
, false
otherwise. Alternatively, use inradical(f, I)
.
Examples
julia> R, (x,) = polynomial_ring(QQ, ["x"])
(Multivariate polynomial ring in 1 variable over QQ, QQMPolyRingElem[x])
julia> f = x
x
julia> I = ideal(R, [x^2])
Ideal generated by
x^2
julia> radical_membership(f, I)
true
julia> g = x+1
x + 1
julia> inradical(g, I)
false
Primality Test
is_prime
— Methodis_prime(I::MPolyIdeal)
Return true
if I
is prime, false
otherwise.
The function computes the minimal associated primes of I
. This may take some time.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> is_prime(I)
false
Primary Test
is_primary
— Methodis_primary(I::MPolyIdeal)
Return true
if I
is primary, false
otherwise.
The function computes a primary decomposition of I
. This may take some time.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = ideal(R, [x, y])^2
Ideal generated by
x^2
x*y
y^2
julia> is_primary(I)
true
Decomposition of Ideals
We discuss various decomposition techniques. They are implemented for polynomial rings over fields and, if explicitly mentioned, also for polynomial rings over the integers. See [DGP99] for a survey.
Radical
radical
— Methodradical(I::MPolyIdeal)
Return the radical of I
.
Implemented Algorithms
If the base ring of I
is a polynomial ring over a field, a combination of the algorithms of Krick and Logar (with modifications by Laplagne) and Kemper is used. For polynomial rings over the integers, the algorithm proceeds as suggested by Pfister, Sadiq, and Steidel. See [KL91], [Kem02], and [PSS11].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> RI = radical(I)
Ideal generated by
x^4 - x^3*y - x^3 - x^2 - x*y^2 + x*y + x + y^3 + y^2
julia> R, (a, b, c, d) = polynomial_ring(ZZ, ["a", "b", "c", "d"])
(Multivariate polynomial ring in 4 variables over ZZ, ZZMPolyRingElem[a, b, c, d])
julia> I = intersect(ideal(R, [9,a,b]), ideal(R, [3,c]))
Ideal generated by
9
3*b
3*a
b*c
a*c
julia> I = intersect(I, ideal(R, [11,2a,7b]))
Ideal generated by
99
3*b
3*a
b*c
a*c
julia> I = intersect(I, ideal(R, [13a^2,17b^4]))
Ideal generated by
39*a^2
13*a^2*c
51*b^4
17*b^4*c
3*a^2*b^4
a^2*b^4*c
julia> I = intersect(I, ideal(R, [9c^5,6d^5]))
Ideal generated by
78*a^2*d^5
117*a^2*c^5
102*b^4*d^5
153*b^4*c^5
6*a^2*b^4*d^5
9*a^2*b^4*c^5
39*a^2*c^5*d^5
51*b^4*c^5*d^5
3*a^2*b^4*c^5*d^5
julia> I = intersect(I, ideal(R, [17,a^15,b^15,c^15,d^15]))
Ideal generated by
1326*a^2*d^5
1989*a^2*c^5
102*b^4*d^5
153*b^4*c^5
663*a^2*c^5*d^5
51*b^4*c^5*d^5
78*a^2*d^15
117*a^2*c^15
78*a^15*d^5
117*a^15*c^5
6*a^2*b^4*d^15
9*a^2*b^4*c^15
39*a^2*c^5*d^15
39*a^2*c^15*d^5
6*a^2*b^15*d^5
9*a^2*b^15*c^5
6*a^15*b^4*d^5
9*a^15*b^4*c^5
39*a^15*c^5*d^5
3*a^2*b^4*c^5*d^15
3*a^2*b^4*c^15*d^5
3*a^2*b^15*c^5*d^5
3*a^15*b^4*c^5*d^5
julia> RI = radical(I)
Ideal generated by
102*b*d
78*a*d
51*b*c
39*a*c
6*a*b*d
3*a*b*c
Primary Decomposition
primary_decomposition
— Methodprimary_decomposition(I::MPolyIdeal; algorithm = :GTZ, cache=true)
Return a minimal primary decomposition of I
.
The decomposition is returned as a vector of tuples $(Q_1, P_1), \dots, (Q_t, P_t)$, say, where each $Q_i$ is a primary ideal with associated prime $P_i$, and where the intersection of the $Q_i$ is I
.
Implemented Algorithms
If the base ring of I
is a polynomial ring over a field, the algorithm of Gianni, Trager, and Zacharias is used by default (algorithm = :GTZ
). Alternatively, the algorithm by Shimoyama and Yokoyama can be used by specifying algorithm = :SY
. For polynomial rings over the integers, the algorithm proceeds as suggested by Pfister, Sadiq, and Steidel. See [GTZ88], [SY96], and [PSS11].
The algorithm of Gianni, Trager, and Zacharias may not terminate over a small finite field. If it terminates, the result is correct.
If computations are done in a ring over a number field, then the output may contain redundant components.
If cache=false
is set, the primary decomposition is recomputed and not cached.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = primary_decomposition(I)
3-element Vector{Tuple{MPolyIdeal{QQMPolyRingElem}, MPolyIdeal{QQMPolyRingElem}}}:
(Ideal (x^3 - x - y^2), Ideal (x^3 - x - y^2))
(Ideal (x^2 - 2*x*y - 2*x + y^2 + 2*y + 1), Ideal (x - y - 1))
(Ideal (y, x^2), Ideal (x, y))
julia> L = primary_decomposition(I, algorithm = :SY, cache=false)
3-element Vector{Tuple{MPolyIdeal{QQMPolyRingElem}, MPolyIdeal{QQMPolyRingElem}}}:
(Ideal (x^3 - x - y^2), Ideal (x^3 - x - y^2))
(Ideal (x^2 - 2*x*y - 2*x + y^2 + 2*y + 1), Ideal (x - y - 1))
(Ideal (y, x^2), Ideal (y, x))
julia> R, (a, b, c, d) = polynomial_ring(ZZ, ["a", "b", "c", "d"])
(Multivariate polynomial ring in 4 variables over ZZ, ZZMPolyRingElem[a, b, c, d])
julia> I = ideal(R, [1326*a^2*d^5, 1989*a^2*c^5, 102*b^4*d^5, 153*b^4*c^5,
663*a^2*c^5*d^5, 51*b^4*c^5*d^5, 78*a^2*d^15, 117*a^2*c^15,
78*a^15*d^5, 117*a^15*c^5, 6*a^2*b^4*d^15, 9*a^2*b^4*c^15,
39*a^2*c^5*d^15, 39*a^2*c^15*d^5, 6*a^2*b^15*d^5, 9*a^2*b^15*c^5,
6*a^15*b^4*d^5, 9*a^15*b^4*c^5, 39*a^15*c^5*d^5, 3*a^2*b^4*c^5*d^15,
3*a^2*b^4*c^15*d^5, 3*a^2*b^15*c^5*d^5, 3*a^15*b^4*c^5*d^5])
Ideal generated by
1326*a^2*d^5
1989*a^2*c^5
102*b^4*d^5
153*b^4*c^5
663*a^2*c^5*d^5
51*b^4*c^5*d^5
78*a^2*d^15
117*a^2*c^15
78*a^15*d^5
117*a^15*c^5
6*a^2*b^4*d^15
9*a^2*b^4*c^15
39*a^2*c^5*d^15
39*a^2*c^15*d^5
6*a^2*b^15*d^5
9*a^2*b^15*c^5
6*a^15*b^4*d^5
9*a^15*b^4*c^5
39*a^15*c^5*d^5
3*a^2*b^4*c^5*d^15
3*a^2*b^4*c^15*d^5
3*a^2*b^15*c^5*d^5
3*a^15*b^4*c^5*d^5
julia> L = primary_decomposition(I)
8-element Vector{Tuple{MPolyIdeal{ZZMPolyRingElem}, MPolyIdeal{ZZMPolyRingElem}}}:
(Ideal (d^5, c^5), Ideal (d, c))
(Ideal (a^2, b^4), Ideal (b, a))
(Ideal (2, c^5), Ideal (2, c))
(Ideal (3), Ideal (3))
(Ideal (13, b^4), Ideal (13, b))
(Ideal (17, a^2), Ideal (17, a))
(Ideal (17, d^15, c^15, b^15, a^15), Ideal (17, d, c, b, a))
(Ideal (9, 3*d^5, d^10), Ideal (3, d))
Absolute Primary Decomposition
absolute_primary_decomposition
— Methodabsolute_primary_decomposition(I::MPolyIdeal{<:MPolyRingElem{QQFieldElem}})
Given an ideal I
in a multivariate polynomial ring over the rationals, return an absolute minimal primary decomposition of I
.
Return the decomposition as a vector of tuples $(Q_i, P_i, P_{ij}, d_{ij})$, say, where $(Q_i, P_i)$ is a (primary, prime) tuple as returned by primary_decomposition(I)
, and $P_{ij}$ represents a corresponding class of conjugated absolute associated primes defined over a number field of degree $d_{ij}$ whose generator prints as _a
.
Implemented Algorithms
The implementation combines the algorithm of Gianni, Trager, and Zacharias for primary decomposition with absolute polynomial factorization.
Over number fields this proceduce might return redundant output.
Examples
julia> R, (y, z) = polynomial_ring(QQ, ["y", "z"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[y, z])
julia> p = z^2+1
z^2 + 1
julia> q = z^3+2
z^3 + 2
julia> I = ideal(R, [p*q^2, y-z^2])
Ideal generated by
z^8 + z^6 + 4*z^5 + 4*z^3 + 4*z^2 + 4
y - z^2
julia> L = primary_decomposition(I)
2-element Vector{Tuple{MPolyIdeal{QQMPolyRingElem}, MPolyIdeal{QQMPolyRingElem}}}:
(Ideal (z^2 + 1, y - z^2), Ideal (z^2 + 1, y - z^2))
(Ideal (z^6 + 4*z^3 + 4, y - z^2), Ideal (z^3 + 2, y - z^2))
julia> AL = absolute_primary_decomposition(I)
2-element Vector{Tuple{MPolyIdeal{QQMPolyRingElem}, MPolyIdeal{QQMPolyRingElem}, MPolyIdeal{AbstractAlgebra.Generic.MPoly{AbsSimpleNumFieldElem}}, Int64}}:
(Ideal (z^2 + 1, y + 1), Ideal (z^2 + 1, y + 1), Ideal (z - _a, y + 1), 2)
(Ideal (z^6 + 4*z^3 + 4, y - z^2), Ideal (z^3 + 2, y - z^2), Ideal (z - _a, y - _a^2), 3)
julia> AP = AL[1][3]
Ideal generated by
z - _a
y + 1
julia> RAP = base_ring(AP)
Multivariate polynomial ring in 2 variables y, z
over number field of degree 2 over QQ
julia> NF = coefficient_ring(RAP)
Number field with defining polynomial x^2 + 1
over rational field
julia> a = gen(NF)
_a
julia> minpoly(a)
x^2 + 1
julia> R, (x, y) = graded_polynomial_ring(QQ, ["x", "y"])
(Graded multivariate polynomial ring in 2 variables over QQ, MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}[x, y])
julia> I = ideal(R, [x^2+y^2])
Ideal generated by
x^2 + y^2
julia> AL = absolute_primary_decomposition(I)
1-element Vector{Tuple{MPolyIdeal{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}, MPolyIdeal{MPolyDecRingElem{QQFieldElem, QQMPolyRingElem}}, MPolyIdeal{MPolyDecRingElem{AbsSimpleNumFieldElem, AbstractAlgebra.Generic.MPoly{AbsSimpleNumFieldElem}}}, Int64}}:
(Ideal (x^2 + y^2), Ideal (x^2 + y^2), Ideal (x + _a*y), 2)
julia> AP = AL[1][3]
Ideal generated by
x + _a*y
julia> RAP = base_ring(AP)
Multivariate polynomial ring in 2 variables over number field graded by
x -> [1]
y -> [1]
Minimal Associated Primes
minimal_primes
— Methodminimal_primes(I::MPolyIdeal; algorithm::Symbol = :GTZ)
Return a vector containing the minimal associated prime ideals of I
.
Implemented Algorithms
If the base ring of I
is a polynomial ring over a field, the algorithm of Gianni, Trager, and Zacharias is used by default (algorithm = :GTZ
). Alternatively, characteristic sets can be used by specifying algorithm = :charSets
. For polynomial rings over the integers, the algorithm proceeds as suggested by Pfister, Sadiq, and Steidel. See [GTZ88] and [PSS11].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = minimal_primes(I)
2-element Vector{MPolyIdeal{QQMPolyRingElem}}:
Ideal (x - y - 1)
Ideal (x^3 - x - y^2)
julia> L = minimal_primes(I, algorithm = :charSets)
2-element Vector{MPolyIdeal{QQMPolyRingElem}}:
Ideal (x - y - 1)
Ideal (x^3 - x - y^2)
julia> R, (a, b, c, d) = polynomial_ring(ZZ, ["a", "b", "c", "d"])
(Multivariate polynomial ring in 4 variables over ZZ, ZZMPolyRingElem[a, b, c, d])
julia> I = ideal(R, [1326*a^2*d^5, 1989*a^2*c^5, 102*b^4*d^5, 153*b^4*c^5,
663*a^2*c^5*d^5, 51*b^4*c^5*d^5, 78*a^2*d^15, 117*a^2*c^15,
78*a^15*d^5, 117*a^15*c^5, 6*a^2*b^4*d^15, 9*a^2*b^4*c^15,
39*a^2*c^5*d^15, 39*a^2*c^15*d^5, 6*a^2*b^15*d^5, 9*a^2*b^15*c^5,
6*a^15*b^4*d^5, 9*a^15*b^4*c^5, 39*a^15*c^5*d^5, 3*a^2*b^4*c^5*d^15,
3*a^2*b^4*c^15*d^5, 3*a^2*b^15*c^5*d^5, 3*a^15*b^4*c^5*d^5])
Ideal generated by
1326*a^2*d^5
1989*a^2*c^5
102*b^4*d^5
153*b^4*c^5
663*a^2*c^5*d^5
51*b^4*c^5*d^5
78*a^2*d^15
117*a^2*c^15
78*a^15*d^5
117*a^15*c^5
6*a^2*b^4*d^15
9*a^2*b^4*c^15
39*a^2*c^5*d^15
39*a^2*c^15*d^5
6*a^2*b^15*d^5
9*a^2*b^15*c^5
6*a^15*b^4*d^5
9*a^15*b^4*c^5
39*a^15*c^5*d^5
3*a^2*b^4*c^5*d^15
3*a^2*b^4*c^15*d^5
3*a^2*b^15*c^5*d^5
3*a^15*b^4*c^5*d^5
julia> L = minimal_primes(I)
6-element Vector{MPolyIdeal{ZZMPolyRingElem}}:
Ideal (d, c)
Ideal (b, a)
Ideal (2, c)
Ideal (3)
Ideal (13, b)
Ideal (17, a)
Weak Equidimensional Decomposition
equidimensional_decomposition_weak
— Methodequidimensional_decomposition_weak(I::MPolyIdeal)
Return a vector of equidimensional ideals where the last entry is the equidimensional hull of I
, that is, the intersection of the primary components of I
of maximal dimension. Each of the previous entries is an ideal of lower dimension whose associated primes are exactly the associated primes of I
of that dimension.
Implemented Algorithms
The implementation relies on ideas of Eisenbud, Huneke, and Vasconcelos. See [EHV92].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = equidimensional_decomposition_weak(I)
2-element Vector{MPolyIdeal{QQMPolyRingElem}}:
Ideal (y, x)
Ideal with 1 generator
Equidimensional Decomposition of radical
equidimensional_decomposition_radical
— Methodequidimensional_decomposition_radical(I::MPolyIdeal)
Return a vector of equidimensional radical ideals increasingly ordered by dimension. For each dimension, the returned radical ideal is the intersection of the associated primes of I
of that dimension.
Implemented Algorithms
The implementation combines the algorithms of Krick and Logar (with modifications by Laplagne) and Kemper. See [KL91] and [Kem02].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = equidimensional_decomposition_radical(I)
2-element Vector{MPolyIdeal{QQMPolyRingElem}}:
Ideal (y, x)
Ideal (x^4 - x^3*y - x^3 - x^2 - x*y^2 + x*y + x + y^3 + y^2)
Equidimensional Hull
equidimensional_hull
— Methodequidimensional_hull(I::MPolyIdeal)
If the base ring of I
is a polynomial ring over a field, return the intersection of the primary components of I
of maximal dimension. In the case of polynomials over the integers, return the intersection of the primary components of I of minimal height. If I
is the unit ideal, return [ideal(1)]
.
Implemented Algorithms
For polynomial rings over a field, the implementation relies on ideas as used by Gianni, Trager, and Zacharias or Krick and Logar. For polynomial rings over the integers, the algorithm proceeds as suggested by Pfister, Sadiq, and Steidel. See [GTZ88], [KL91], and [PSS11].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = equidimensional_hull(I)
Ideal generated by
x^5 - 2*x^4*y - 2*x^4 + x^3*y^2 + 2*x^3*y - x^2*y^2 + 2*x^2*y + 2*x^2 + 2*x*y^3 + x*y^2 - 2*x*y - x - y^4 - 2*y^3 - y^2
julia> R, (a, b, c, d) = polynomial_ring(ZZ, ["a", "b", "c", "d"])
(Multivariate polynomial ring in 4 variables over ZZ, ZZMPolyRingElem[a, b, c, d])
julia> I = ideal(R, [1326*a^2*d^5, 1989*a^2*c^5, 102*b^4*d^5, 153*b^4*c^5,
663*a^2*c^5*d^5, 51*b^4*c^5*d^5, 78*a^2*d^15, 117*a^2*c^15,
78*a^15*d^5, 117*a^15*c^5, 6*a^2*b^4*d^15, 9*a^2*b^4*c^15,
39*a^2*c^5*d^15, 39*a^2*c^15*d^5, 6*a^2*b^15*d^5, 9*a^2*b^15*c^5,
6*a^15*b^4*d^5, 9*a^15*b^4*c^5, 39*a^15*c^5*d^5, 3*a^2*b^4*c^5*d^15,
3*a^2*b^4*c^15*d^5, 3*a^2*b^15*c^5*d^5, 3*a^15*b^4*c^5*d^5])
Ideal generated by
1326*a^2*d^5
1989*a^2*c^5
102*b^4*d^5
153*b^4*c^5
663*a^2*c^5*d^5
51*b^4*c^5*d^5
78*a^2*d^15
117*a^2*c^15
78*a^15*d^5
117*a^15*c^5
6*a^2*b^4*d^15
9*a^2*b^4*c^15
39*a^2*c^5*d^15
39*a^2*c^15*d^5
6*a^2*b^15*d^5
9*a^2*b^15*c^5
6*a^15*b^4*d^5
9*a^15*b^4*c^5
39*a^15*c^5*d^5
3*a^2*b^4*c^5*d^15
3*a^2*b^4*c^15*d^5
3*a^2*b^15*c^5*d^5
3*a^15*b^4*c^5*d^5
julia> L = equidimensional_hull(I)
Ideal generated by
3
Radical of the Equidimensional Hull
equidimensional_hull_radical
— Methodequidimensional_hull_radical(I::MPolyIdeal)
Return the intersection of the associated primes of I
of maximal dimension. If I
is the unit ideal, return [ideal(1)]
.
Implemented Algorithms
The implementation relies on a combination of the algorithms of Krick and Logar (with modifications by Laplagne) and Kemper. See [KL91] and [Kem02].
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Multivariate polynomial ring in 2 variables over QQ, QQMPolyRingElem[x, y])
julia> I = intersect(ideal(R, [x, y])^2, ideal(R, [y^2-x^3+x]))
Ideal generated by
x^3*y - x*y - y^3
x^4 - x^2 - x*y^2
julia> I = intersect(I, ideal(R, [x-y-1])^2)
Ideal generated by
x^5*y - 2*x^4*y^2 - 2*x^4*y + x^3*y^3 + 2*x^3*y^2 - x^2*y^3 + 2*x^2*y^2 + 2*x^2*y + 2*x*y^4 + x*y^3 - 2*x*y^2 - x*y - y^5 - 2*y^4 - y^3
x^6 - 2*x^5 - 3*x^4*y^2 - 2*x^4*y + 2*x^3*y^3 + 3*x^3*y^2 + 2*x^3*y + 2*x^3 + 5*x^2*y^2 + 2*x^2*y - x^2 + 3*x*y^4 - 5*x*y^2 - 2*x*y - 2*y^5 - 4*y^4 - 2*y^3
julia> L = equidimensional_hull_radical(I)
Ideal generated by
x^4 - x^3*y - x^3 - x^2 - x*y^2 + x*y + x + y^3 + y^2
Homogenization and Dehomogenization
Referring to [KR05] for definitions and technical details, we discuss homogenization and dehomogenization in the context of $\mathbb Z^m$-gradings.
homogenizer
— Methodhomogenizer(P::MPolyRing, h::VarName; pos::Int=1+ngens(P))
Create a "homogenizing operator" assuming a standard grading; h
is the name of the homogenizing variable; pos
indicates where to put the homogenizing variable in the list of generators of the graded polynomial ring (default is after all the other variables).
Examples
julia> P, (x,y) = polynomial_ring(QQ, ["x", "y"]);
julia> H = homogenizer(P, "h");
julia> H(x^2+y)
x^2 + y*h
julia> V = H.([x^2+y, x+y^2]);
julia> parent(V[1]) == parent(V[2])
true
julia> H(ideal([x^2+y]))
Ideal generated by
x^2 + y*h
homogenizer
— Methodhomogenizer(P::MPolyRing, W::Union{ZZMatrix, Matrix{<:IntegerUnion}}, h::VarName; pos::Int=1+ngens(P))
Create a "homogenizing operator" using the grading specified by the columns of W
; h
is the prefix for the homogenizing variables; pos
indicates where to put the homogenizing variables in the list of generators of the graded polynomial ring (default is after all the other variables).
Examples
julia> P, (x,y) = polynomial_ring(QQ, ["x", "y"]);
julia> W = ZZMatrix(2,2, [2,3,5,7]);
julia> H = homogenizer(P, W, "h");
julia> H(x^2+y)
x^2 + y*h[1]*h[2]^3
julia> V = H.([x^2+y, x+y^2]);
julia> parent(V[1]) == parent(V[2])
true
julia> H(ideal([x^2+y]))
Ideal generated by
x^2 + y*h[1]*h[2]^3
dehomogenizer
— Methoddehomogenizer(H::Homogenizer)
Create a "dehomogenizing operator" from a Homogenizer
; it is effectively a polynomial ring homomorphism mapping all homogenizing variables to 1. A Dehomogenizer
is a post-inverse for the Homogenizer
it was created from.
Examples
julia> P, (x,y) = polynomial_ring(QQ, ["x", "y"]);
julia> H = homogenizer(P, "h");
julia> DH = dehomogenizer(H);
julia> F = H(x^2+y)
x^2 + y*h
julia> DH(F)
x^2 + y
julia> V = [x^2+y, x*y+y^2]; HV = H.(V);
julia> parent(DH(HV[1])) == P && parent(DH(HV[2])) == P
true
julia> DH(H(ideal(V)))
Ideal generated by
x*y + y^2
x^2 + y
y^3 + y^2
julia> P, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> I = ideal([x^2+y, x*y+y^2]);
julia> H = homogenizer(P, "h");
julia> Ih = H(I) # homogenization of ideal I
Ideal generated by
x*y + y^2
x^2 + y*h
y^3 + y^2*h
julia> DH = dehomogenizer(H);
julia> DH(Ih) == I # dehomogenization of Ih
true
Ideals as Modules
ideal_as_module
— Methodideal_as_module(I::MPolyIdeal)
Return I
considered as an object of type SubquoModule
.
Examples
julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]);
julia> I = ideal(R, [x^2, y^3])
Ideal generated by
x^2
y^3
julia> ideal_as_module(I)
Submodule with 2 generators
1 -> x^2*e[1]
2 -> y^3*e[1]
represented as subquotient with no relations.
julia> S, (x, y) = graded_polynomial_ring(QQ, ["x", "y"]);
julia> I = ideal(S, [x^2, y^3])
Ideal generated by
x^2
y^3
julia> ideal_as_module(I)
Graded submodule of S^1
1 -> x^2*e[1]
2 -> y^3*e[1]
represented as subquotient with no relations
Generating Special Ideals
Katsura-n
These systems appeared in a problem of magnetism in physics. For a given $n$ katsura(n)
has $2^n$ solutions and is defined in a polynomial ring with $n+1$ variables over the rational numbers. For a given polynomial ring R
with $n$ variables katsura(R)
defines the corresponding system with $2^{n-1}$ solutions.
katsura
— Methodkatsura(n::Int)
Given a natural number n
return the Katsura ideal over the rational numbers generated by $u_m - \sum_{l=-n}^n u_{l-m} u_l$, $1 - \sum_{l = -n}^n u_l$ where $u_{-i} = u_i$, and $u_i = 0$ for $i > n$ and $m \in \{-n, \ldots, n\}$.
Note that indices have been shifted to start from 1.
Examples
julia> I = katsura(2)
Ideal generated by
x1 + 2*x2 + 2*x3 - 1
x1^2 - x1 + 2*x2^2 + 2*x3^2
2*x1*x2 + 2*x2*x3 - x2
julia> base_ring(I)
Multivariate polynomial ring in 3 variables x1, x2, x3
over rational field
katsura
— Methodkatsura(R::MPolyRing)
Return the Katsura ideal in the given polynomial ring R
.
Examples
julia> R, _ = QQ["x", "y", "z"]
(Multivariate polynomial ring in 3 variables over QQ, QQMPolyRingElem[x, y, z])
julia> katsura(R)
Ideal generated by
x + 2*y + 2*z - 1
x^2 - x + 2*y^2 + 2*z^2
2*x*y + 2*y*z - y