Orders
Orders, that is, unitary subrings that are free $\mathbf{Z}$-modules of rank equal to the degree of the number field, are at the core of the arithmetic of number fields. In Hecke, orders are always represented using the module structure, be it the $\mathbf{Z}$-module structure for orders of absolute numbers fields, or the structure as a module over the maximal order of the base field in the case of relative number fields. In this chapter we mainly deal with orders of absolute fields. However, many functions apply in same way to relative extensions. There are more general definitions of orders in number fields available, but those are (currently) not implemented in Hecke.
Among all orders in a fixed field, there is a unique maximal order, called the maximal order, or ring of integers of the number field. It is well known that this is the only order that is a Dedekind domain, hence has a rich ideal structure as well. The maximal order is also the integral closure of $\mathbf{Z}$ in the number field and can also be interpreted as a normalization of any other order.
Creation and basic properties
order — Methodorder(a::Vector{AbsSimpleNumFieldElem}; check::Bool = true, cached::Bool = true, isbasis::Bool = false) -> AbsSimpleNumFieldOrder
order(K::AbsSimpleNumField, a::Vector{AbsSimpleNumFieldElem}; check::Bool = true, cached::Bool = true, isbasis::Bool = false) -> AbsSimpleNumFieldOrderReturns the order generated by $a$. If check is set, it is checked whether $a$ defines an order, in particular the integrality of the elements is checked by computing minimal polynomials. If isbasis is set, then elements are assumed to form a $\mathbf{Z}$-basis. If cached is set, then the constructed order is cached for future use.
order — Methodorder(K::AbsSimpleNumField, A::QQMatrix; check::Bool = true) -> AbsSimpleNumFieldOrderReturns the order which has basis matrix $A$ with respect to the power basis of $K$. If check is set, it is checked whether $A$ defines an order.
order(K::AbsSimpleNumField, A::QQMatrix; check::Bool = true) -> AbsSimpleNumFieldOrderReturns the order which has basis matrix $A$ with respect to the power basis of $K$. If check is set, it is checked whether $A$ defines an order.
equation_order — Methodequation_order(K::number_field) -> NumFieldOrder
equation_order(K::number_field) -> NumFieldOrderReturns the equation order of the number field $K$.
maximal_order — Methodmaximal_order(K::NumField{QQFieldElem}; discriminant::ZZRingElem, ramified_primes::Vector{ZZRingElem}) -> AbsNumFieldOrderReturns the maximal order of $K$. Additional information can be supplied if they are already known, as the ramified primes or the discriminant of the maximal order.
Example
julia> Qx, x = QQ["x"];
julia> K, a = number_field(x^3 + 2, "a");
julia> O = maximal_order(K);maximal_order — Methodmaximal_order(O::AbsNumFieldOrder; index_divisors::Vector{ZZRingElem}, discriminant::ZZRingElem, ramified_primes::Vector{ZZRingElem}) -> AbsNumFieldOrderReturns the maximal order of the number field that contains $O$. Additional information can be supplied if they are already known, as the ramified primes, the discriminant of the maximal order or a set of integers dividing the index of $O$ in the maximal order.
maximal_order(O::AlgAssAbsOrd)Given an order $O$, this function returns a maximal order containing $O$.
maximal_order(A::AbstractAssociativeAlgebra{QQFieldElem}) -> AlgAssAbsOrdReturns a maximal order of $A$.
maximal_order(O::AlgAssRelOrd) -> AlgAssRelOrdReturns a maximal order of the algebra of $O$ containing itself.
lll — Methodlll(M::AbsNumFieldOrder) -> AbsNumFieldOrderThe same order, but with the basis now being LLL reduced wrt. the Minkowski metric.
any_order — Methodany_order(K::number_field)Return some order in $K$. In case the defining polynomial for $K$ is monic and integral, this just returns the equation order. In the other case $\mathbb Z[\alpha]\cap \mathbb Z[1/\alpha]$ is returned.
Example
julia> Qx, x = polynomial_ring(QQ, :x);
julia> K, a = number_field(x^2 - 2, :a);
julia> O = equation_order(K)
Maximal order
of number field with defining polynomial x^2 - 2
over rational field
with Z-basis [1, a]parent — Methodparent(O::AbsNumFieldOrder) -> AbsNumFieldOrderSetReturns the parent of $\mathcal O$, that is, the set of orders of the ambient number field.
signature — Methodsignature(O::NumFieldOrder) -> Tuple{Int, Int}Returns the signature of the ambient number field of $\mathcal O$.
nf — Methodnf(O::NumFieldOrder) -> NumFieldReturns the ambient number field of $\mathcal O$.
basis — Methodbasis(O::AbsNumFieldOrder) -> Vector{AbsNumFieldOrderElem}Returns the $\mathbf Z$-basis of $\mathcal O$.
basis(I::AbsNumFieldOrderFractionalIdeal) -> Vector{AbsSimpleNumFieldElem}Returns the $\mathbf Z$-basis of $I$.
lll_basis — Methodlll_basis(M::NumFieldOrder) -> Vector{NumFieldElem}A basis for $M$ that is reduced using the LLL algorithm for the Minkowski metric.
basis — Methodbasis(O::AbsSimpleNumFieldOrder, K::AbsSimpleNumField) -> Vector{AbsSimpleNumFieldElem}Returns the $\mathbf Z$-basis elements of $\mathcal O$ as elements of the ambient number field.
pseudo_basis — Method pseudo_basis(O::RelNumFieldOrder{T, S}) -> Vector{Tuple{NumFieldElem{T}, S}}Returns the pseudo-basis of $\mathcal O$.
basis_pmatrix — Method basis_pmatrix(O::RelNumFieldOrder) -> PMatReturns the basis pseudo-matrix of $\mathcal O$ with respect to the power basis of the ambient number field.
basis_nf — Method basis_nf(O::RelNumFieldOrder) -> Vector{NumFieldElem}Returns the elements of the pseudo-basis of $\mathcal O$ as elements of the ambient number field.
inv_coeff_ideals — Method inv_coeff_ideals(O::RelNumFieldOrder{T, S}) -> Vector{S}Returns the inverses of the coefficient ideals of the pseudo basis of $O$.
basis_matrix — Methodbasis_matrix(O::AbsNumFieldOrder) -> QQMatrixReturns the basis matrix of $\mathcal O$ with respect to the basis of the ambient number field.
basis_mat_inv — Methodbasis_mat_inv(A::GenOrdIdl) -> FakeFracFldMatReturn the inverse of the basis matrix of $A$.
gen_index — Methodgen_index(O::AbsSimpleNumFieldOrder) -> QQFieldElemReturns the generalized index of $\mathcal O$ with respect to the equation order of the ambient number field.
is_index_divisor — Methodis_index_divisor(O::AbsSimpleNumFieldOrder, d::ZZRingElem) -> Bool
is_index_divisor(O::AbsSimpleNumFieldOrder, d::Int) -> BoolReturns whether $d$ is a divisor of the index of $\mathcal O$. It is assumed that $\mathcal O$ contains the equation order of the ambient number field.
minkowski_matrix — Methodminkowski_matrix(O::AbsNumFieldOrder, abs_tol::Int = 64) -> ArbMatrixReturns the Minkowski matrix of $\mathcal O$. Thus if $\mathcal O$ has degree $d$, then the result is a matrix in $\operatorname{Mat}_{d\times d}(\mathbf R)$. The entries of the matrix are real balls of type ArbFieldElem with radius less then 2^-abs_tol.
in — Methodin(a::NumFieldElem, O::NumFieldOrder) -> BoolChecks whether $a$ lies in $\mathcal O$.
norm_change_const — Methodnorm_change_const(O::AbsSimpleNumFieldOrder) -> (Float64, Float64)Returns $(c_1, c_2) \in \mathbf R_{>0}^2$ such that for all $x = \sum_{i=1}^d x_i \omega_i \in \mathcal O$ we have $T_2(x) \leq c_1 \cdot \sum_i^d x_i^2$ and $\sum_i^d x_i^2 \leq c_2 \cdot T_2(x)$, where $(\omega_i)_i$ is the $\mathbf Z$-basis of $\mathcal O$.
trace_matrix — Methodtrace_matrix(O::AbsNumFieldOrder) -> ZZMatrixReturns the trace matrix of $\mathcal O$, that is, the matrix $(\operatorname{tr}_{K/\mathbf Q}(b_i \cdot b_j))_{1 \leq i, j \leq d}$.
+ — Method+(R::AbsSimpleNumFieldOrder, S::AbsSimpleNumFieldOrder) -> AbsSimpleNumFieldOrderGiven two orders $R$, $S$ of $K$, this function returns the smallest order containing both $R$ and $S$. It is assumed that $R$, $S$ contain the ambient equation order and have coprime index.
poverorder — Methodpoverorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
poverorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrderThis function tries to find an order that is locally larger than $\mathcal O$ at the prime $p$: If $p$ divides the index $[ \mathcal O_K : \mathcal O]$, this function will return an order $R$ such that $v_p([ \mathcal O_K : R]) < v_p([ \mathcal O_K : \mathcal O])$. Otherwise $\mathcal O$ is returned.
poverorders — Methodpoverorders(O, p) -> Vector{Ord}Returns all p-overorders of O, that is all overorders M, such that the index of O in M is a p-power.
pmaximal_overorder — Methodpmaximal_overorder(O::AbsSimpleNumFieldOrder, p::ZZRingElem) -> AbsSimpleNumFieldOrder
pmaximal_overorder(O::AbsSimpleNumFieldOrder, p::Integer) -> AbsSimpleNumFieldOrderThis function finds a $p$-maximal order $R$ containing $\mathcal O$. That is, the index $[ \mathcal O_K : R]$ is not divisible by $p$.
pradical — Methodpradical(O::AbsSimpleNumFieldOrder, p::{ZZRingElem|Integer}) -> AbsNumFieldOrderIdealGiven a prime number $p$, this function returns the $p$-radical $\sqrt{p\mathcal O}$ of $\mathcal O$, which is just $\{ x \in \mathcal O \mid \exists k \in \mathbf Z_{\geq 0} \colon x^k \in p\mathcal O \}$. It is not checked that $p$ is prime.
pradical — Method pradical(O::RelNumFieldOrder, P::AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}) -> RelNumFieldOrderIdealGiven a prime ideal $P$, this function returns the $P$-radical $\sqrt{P\mathcal O}$ of $\mathcal O$, which is just $\{ x \in \mathcal O \mid \exists k \in \mathbf Z_{\geq 0} \colon x^k \in P\mathcal O \}$. It is not checked that $P$ is prime.
ring_of_multipliers — Methodring_of_multipliers(I::AbsNumFieldOrderIdeal) -> AbsNumFieldOrderComputes the order $(I : I)$, which is the set of all $x \in K$ with $xI \subseteq I$.
Invariants
discriminant — Methoddiscriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElemReturns the discriminant of $\mathcal O$.
reduced_discriminant — Methodreduced_discriminant(O::AbsSimpleNumFieldOrder) -> ZZRingElemReturns the reduced discriminant, that is, the largest elementary divisor of the trace matrix of $\mathcal O$.
degree — Methoddegree(O::NumFieldOrder) -> IntReturns the degree of $\mathcal O$.
index — Methodindex(O::AbsSimpleNumFieldOrder) -> ZZRingElemAssuming that the order $\mathcal O$ contains the equation order $\mathbf Z[\alpha]$ of the ambient number field, this function returns the index $[ \mathcal O : \mathbf Z]$.
different — Methoddifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdealThe different ideal of $R$, that is, the ideal generated by all differents of elements in $R$. For Gorenstein orders, this is also the inverse ideal of the co-different.
codifferent — Methodcodifferent(R::AbsNumFieldOrder) -> AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}The codifferent ideal of $R$, i.e. the trace-dual of $R$.
is_gorenstein — Methodis_gorenstein(O::AbsSimpleNumFieldOrder) -> BoolReturn whether the order \mathcal{O} is Gorenstein.
is_bass — Methodis_bass(O::AbsSimpleNumFieldOrder) -> BoolReturn whether the order \mathcal{O} is Bass.
is_equation_order — Methodis_equation_order(O::NumFieldOrder) -> BoolReturns whether $\mathcal O$ is the equation order of the ambient number field $K$.
zeta_log_residue — Methodzeta_log_residue(O::AbsSimpleNumFieldOrder, error::Float64) -> ArbFieldElemComputes the residue of the zeta function of $\mathcal O$ at $1$. The output will be an element of type ArbFieldElem with radius less then error.
ramified_primes — Methodramified_primes(O::AbsNumFieldOrder) -> Vector{ZZRingElem}Returns the list of prime numbers that divide $\operatorname{disc}(\mathcal O)$.
Arithmetic
Progress and intermediate results of the functions mentioned here can be obtained via verbose_level, supported are
ClassGroupUnitGroup
All of the functions have a very similar interface: they return an abelian group and a map converting elements of the group into the objects required. The maps also allow a point-wise inverse to server as the discrete logarithm map. For more information on abelian groups, see here, for ideals, here.
torsion_unit_group(::AbsSimpleNumFieldOrder)unit_group(::AbsSimpleNumFieldOrder)unit_group_fac_elem(::AbsSimpleNumFieldOrder)sunit_group(::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}})sunit_group_fac_elem(::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}})sunit_mod_units_group_fac_elem(::Vector{AbsNumFieldOrderIdeal{AbsSimpleNumField, AbsSimpleNumFieldElem}})class_group(::AbsSimpleNumFieldOrder)picard_group(::AbsSimpleNumFieldOrder)narrow_class_group(::AbsSimpleNumFieldOrder)
For the processing of units, there are a couple of helper functions also available:
is_independent — Functionis_independent{T}(x::Vector{T})Given an array of non-zero units in a number field, returns whether they are multiplicatively independent.
Predicates
is_contained — Methodis_contained(R::AbsNumFieldOrder, S::AbsNumFieldOrder) -> BoolChecks if $R$ is contained in $S$.
is_maximal — Methodis_maximal(R::AbsNumFieldOrder) -> BoolTests if the order $R$ is maximal. This might trigger the computation of the maximal order.