Free Modules
In what follows, the expression free module refers to a free module of finite rank over a multivariate polynomial ring. More concretely, given a multivariate polynomial ring $R$, the free $R$-modules considered are of type $R^p$, where we think of $R^p$ as a free module with a given basis, namely the basis of standard unit vectors. Accordingly, elements of free modules are represented by coordinate vectors, and homomorphisms between free modules by matrices.
By convention, vectors are row vectors, and matrices operate by multiplication on the right.
Types
All OSCAR types for finitely presented modules over multivariate polynomial rings belong to the abstract type ModuleFP{T}
, where T
is the element type of the polynomial ring. For free modules, OSCAR provides the abstract subtype AbstractFreeMod{T} <: ModuleFP{T}
and its concrete descendant FreeMod{T <: RingElem}
.
Canonical maps such us the canonical projection onto a quotient module arise in many constructions in commutative algebra. The FreeMod
type is designed so that it allows for the caching of such maps when executing functions. The direct_sum
function discussed in this section provides an example.
Constructor
free_module
— Functionfree_module(R::MPolyRing, p::Int, name::String = "e"; cached::Bool = false)
Return the free $R$-module $R^p$, created with its basis of standard unit vectors.
The string name
specifies how the basis vectors are printed.
Examples
julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
(Multivariate Polynomial Ring in x, y over Rational Field, fmpq_mpoly[x, y])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y over Rational Field
julia> F[2]
e[2]
julia> typeof(F)
FreeMod{fmpq_mpoly}
Data Associated to Free Modules
If F
is a free R
-module, then
base_ring(F)
refers toR
,basis(F)
,gens(F)
to the basis vectors ofF
,rank(F)
,ngens(F)
,dim(F)
to the number of these vectors, andF[i]
,basis(F, i)
,gen(F, i)
to thei
-th such vector.
Examples
julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
(Multivariate Polynomial Ring in x, y over Rational Field, fmpq_mpoly[x, y])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y over Rational Field
julia> basis(F)
3-element Vector{FreeModElem{fmpq_mpoly}}:
e[1]
e[2]
e[3]
julia> rank(F)
3
Elements of Free Modules
All OSCAR types for elements of finitely presented modules over multivariate polynomial rings belong to the abstract type ModuleElemFP{T}
, where T
is the element type of the polynomial ring. For elements of free modules, there are the abstract subtype AbstractFreeModElem{T} <: ModuleFPElem{T}
and its concrete descendant FreeModElem{T}
which implements an element $f$ of a free module $F$ as a sparse row, that is, as an object of type SRow{T}
. This object specifies the coordinates of $f$ with respect to the basis of standard unit vectors of $F$. To create an element, enter its coordinates as a sparse row or a vector:
(F::FreeMod{T})(c::SRow{T}) where T
(F::FreeMod{T})(c::Vector{T}) where T
Alternatively, directly write the element as a linear combination of basis vectors of $F$:
Examples
julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
(Multivariate Polynomial Ring in x, y over Rational Field, fmpq_mpoly[x, y])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y over Rational Field
julia> f = F(sparse_row(R, [(1,x),(3,y)]))
x*e[1] + y*e[3]
julia> g = F( [x, zero(R), y])
x*e[1] + y*e[3]
julia> h = x*F[1] + y*F[3]
x*e[1] + y*e[3]
julia> f == g == h
true
Given an element f
of a free module F
over a multivariate polynomial ring with element type T
,
parent(f)
refers toF
, andcoefficients(f)
to the coordinate vector off
, returned as an object of typeSRow{T}
.
Examples
julia> R, (x, y) = PolynomialRing(QQ, ["x", "y"])
(Multivariate Polynomial Ring in x, y over Rational Field, fmpq_mpoly[x, y])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y over Rational Field
julia> f = x*F[1] + y*F[3]
x*e[1] + y*e[3]
julia> parent(f)
Free module of rank 3 over Multivariate Polynomial Ring in x, y over Rational Field
julia> coefficients(f)
Sparse row with positions [1, 3] and values fmpq_mpoly[x, y]
The zero element of a free module is obtained as follows:
zero
— Methodzero(F::AbstractFreeMod)
Return the zero element of F
.
Whether a given element of a free module is zero can be tested as follows:
iszero
— Methodiszero(f::AbstractFreeModElem)
Return true
if f
is zero, false
otherwise.
Tests on Free Modules
==
— Method==(F::FreeMod, G::FreeMod)
Return true
if F
and G
are equal, false
otherwise.
Here, F
and G
are equal iff their base rings, ranks, and names for printing the basis elements are equal.
iszero
— Methodiszero(F::AbstractFreeMod)
Return true
if F
is the zero module, false
otherwise.
Homomorphisms from Free Modules
All OSCAR types for homomorphisms of finitely presented modules over multivariate polynomial rings belong to the abstract type ModuleFPHom{T1, T2}
, where T1
and T2
are the types of domain and codomain respectively. A homomorphism $F\rightarrow M$ from a free module $F$ is determined by specifying the images of the basis vectors of $F$ in $M$. For such homomorphisms, OSCAR provides the concrete type FreeModuleHom{T1, T2} <: ModuleFPHom{T1, T2}
as well as the following constructors:
hom
— Methodhom(F::FreeMod, M::ModuleFP{T}, V::Vector{<:ModuleFPElem{T}}) where T
Given a vector V
of rank(F)
elements of M
, return the homomorphism F
$\to$ M
which sends the i
-th basis vector of F
to the i
-th entry of V
.
hom(F::FreeMod, M::ModuleFP{T}, A::MatElem{T}) where T
Given a matrix A
with rank(F)
rows and ngens(M)
columns, return the homomorphism F
$\to$ M
which sends the i
-th basis vector of F
to the linear combination $\sum_j A[i,j]*M[j]$ of the generators M[j]
of M
.
Examples
julia> R, (x, y, z) = PolynomialRing(QQ, ["x", "y", "z"])
(Multivariate Polynomial Ring in x, y, z over Rational Field, fmpq_mpoly[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]]
3-element Vector{FreeModElem{fmpq_mpoly}}:
y*e[1]
x*e[1] + y*e[2]
z*e[2]
julia> a = hom(F, G, V)
Map with following data
Domain:
=======
Free module of rank 3 over Multivariate Polynomial Ring in x, y, z over Rational Field
Codomain:
=========
Free module of rank 2 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> a(F[2])
x*e[1] + y*e[2]
julia> W = matrix(R, [y 0; x y; 0 z])
[y 0]
[x y]
[0 z]
julia> b = hom(F, G, W)
Map with following data
Domain:
=======
Free module of rank 3 over Multivariate Polynomial Ring in x, y, z over Rational Field
Codomain:
=========
Free module of rank 2 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> a == b
true
Given a homomorphism of type FreeModuleHom
, a matrix A
representing it is recovered by the following function:
matrix
— Methodmatrix(a::FreeModuleHom)
Given a homomorphism a
of type FreeModuleHom
with domain F
and codomain M
, return a matrix A
with rank(F)
rows and ngens(M)
columns such that a == hom(F, M, A)
.
Examples
julia> R, (x, y, z) = PolynomialRing(QQ, ["x", "y", "z"])
(Multivariate Polynomial Ring in x, y, z over Rational Field, fmpq_mpoly[x, y, z])
julia> F = free_module(R, 3)
Free module of rank 3 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> G = free_module(R, 2)
Free module of rank 2 over Multivariate Polynomial Ring in x, y, z over Rational Field
julia> V = [y*G[1], x*G[1]+y*G[2], z*G[2]];
julia> a = hom(F, G, V);
julia> matrix(a)
[y 0]
[x y]
[0 z]
The domain and codomain of a homomorphism a
of type FreeModuleHom
can be recovered by entering domain(a)
and codomain(a)
, respectively.