Introduction

This page lists the OSCAR features for tropical geometry, which are still at the very beginning of their development. For notation we refer to Diane Maclagan, Bernd Sturmfels (2015) and Michael Joswig (2021).

Tropical semirings

TropicalSemiringType
TropicalSemiring(M::Union{typeof(min),typeof(max)}=min)

The tropical semiring with min (default) or max.

Warning

There is no subtraction in the tropical semiring. Any subtraction of two tropical numbers will yield an error.

Examples (basic arithmetic)

julia> T = TropicalSemiring() # = TropicalSemiring(min)
Tropical semiring (min)

julia> T = TropicalSemiring(max)
Tropical semiring (max)

julia> 0*T(3) + 1*T(1)^2 + inf(T) # = max(0+3,1+2*1,-∞)
(3)

julia> T(0) == 0    # checks whether the tropical number is 0
true

julia> iszero(T(0)) # checks whether the tropical number is neutral element of addition
false

Examples (polynomials)

julia> T = TropicalSemiring()
Tropical semiring (min)

julia> Tx,(x1,x2) = PolynomialRing(T,3)
(Multivariate Polynomial Ring in x1, x2, x3 over Tropical semiring (min), AbstractAlgebra.Generic.MPoly{Oscar.TropicalSemiringElem{typeof(min)}}[x1, x2, x3])

julia> f = x1 + -1*x2 + 0
x1 + (-1)*x2 + (0)

julia> evaluate(f,[T(-1//2),T(1//2)]) # warning: omitting T(0) gives an error
(-1//2)

Examples (matrices)

julia> T = TropicalSemiring()
Tropical semiring (min)

julia> A = [T(0) inf(T); inf(T) T(0)] # = tropical identity matrix
2×2 Matrix{Oscar.TropicalSemiringElem{typeof(min)}}:
 (0)  ∞
 ∞    (0)

julia> 2*A
2×2 Matrix{Oscar.TropicalSemiringElem{typeof(min)}}:
 (2)  ∞
 ∞    (2)

julia> A*A
2×2 Matrix{Oscar.TropicalSemiringElem{typeof(min)}}:
 (0)  ∞
 ∞    (0)

julia> det(A)
(0)
source
TropicalSemiringMapType
TropicalSemiringMap(K,p,M::Union{typeof(min),typeof(max)}=min)

Constructs a map val from K to the min tropical semiring T (default) or the max tropical semiring that:

  • is a semigroup homomorphism (K,*) -> (T,+),
  • preserves the ordering on both sides.

In other words, val is either a valuation on K with image in TropicalSemiring(min) or the negative of a valuation on K with image in TropicalSemiring(max).

The role of val is to encode with respect to which valuation on K and under which convention (min or max) tropical computations should take place.

Currently, the only supported valuations are:

  • the $t$-adic valuation on $\mathbb{Q}(t)$
  • the $p$-adic valuations on $\mathbb{Q}$
  • the trivial valuation on any field

Examples

\[p\]

-adic valuation on $\mathbb{Q}$:

julia> val_2 = TropicalSemiringMap(QQ,2); # = TropicalSemiringMap(QQ,2,min)

julia> val_2(4)
(2)
julia> val_2(1//4)
(-2)
julia> val_2 = TropicalSemiringMap(QQ,2,max);

julia> val_2(4)
(-2)
julia> val_2(1//4)
(2)

\[t\]

-adic valuation on $\mathbb{Q}(t)$:

julia> Kt,t = RationalFunctionField(QQ,"t");

julia> val_t = TropicalSemiringMap(Kt,t);

julia> val_t(t^2)
(2)
julia> val_t(1//t^2)
(-2)

Trivial valuation on $\mathbb{Q}$:

julia> val = TropicalSemiringMap(QQ);

julia> val(4)
(0)
julia> val(1//4)
(0)
julia> val(0)
∞
source
tropical_polynomialFunction
tropical_polynomial(f::MPolyElem,M::Union{typeof(min),typeof(max)}=min)

Given a polynomial f over a field with an intrinsic valuation (i.e., a field on which a function valuation is defined such as PadicField(7,2)), returns the tropicalization of f as a polynomial over the min tropical semiring (default) or the max tropical semiring.

Examples

julia> K = PadicField(7, 2)
Field of 7-adic numbers

julia> Kxy, (x,y) = K["x", "y"]
(Multivariate Polynomial Ring in x, y over Field of 7-adic numbers, AbstractAlgebra.Generic.MPoly{padic}[x, y])

julia> f = 7*x+y+49
(7^1 + O(7^3))*x + y + 7^2 + O(7^4)

julia> tropical_polynomial(f,min)
(1)*x + y + (2)

julia> tropical_polynomial(f,max)
(-1)*x + y + (-2)
source
tropical_polynomial(f::MPolyElem,val::TropicalSemiringMap)

Given a polynomial f and a tropical semiring map val, returns the tropicalization of f as a polynomial over the tropical semiring.

Examples

julia> R, (x,y) = PolynomialRing(QQ,["x", "y"])
(Multivariate Polynomial Ring in x, y over Rational Field, fmpq_mpoly[x, y])

julia> val = TropicalSemiringMap(QQ,7)
The 7-adic valuation on Rational Field

julia> f = 7*x+y+49
7*x + y + 49

julia> tropical_polynomial(f,val)
(1)*x + y + (2)
source

Tropical curves

(no functions yet, under active development)

TropicalCurveType
TropicalCurve(PC::PolyhedralComplex)

Construct a tropical curve from a polyhedral complex. If the curve is embedded, vertices must are points in $\mathbb R^n$. If the curve is abstract, the polyhedral complex is empty, vertices must be 1, ..., n, and the graph is given as attribute.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4]])
3×4 IncidenceMatrix
[1, 2]
[1, 3]
[1, 4]


julia> VR = [0 0; 1 0; -1 0; 0 1]
4×2 Matrix{Int64}:
  0  0
  1  0
 -1  0
  0  1

julia> PC = PolyhedralComplex{fmpq}(IM, VR)
A polyhedral complex in ambient dimension 2

julia> TC = TropicalCurve(PC)
A min tropical curve in 2-dimensional Euclidean space

julia> abs_TC = TropicalCurve(IM)
An abstract min tropical curve
source

in work: chip firing, jacobians.

Tropical hypersurfaces

TropicalHypersurfaceType
TropicalHypersurface(f::AbstractAlgebra.Generic.MPoly{Oscar.TropicalSemiringElem{T}})

Return the tropical hypersurface of a tropical polynomial f.

Examples

julia> T = TropicalSemiring(min)
Tropical semiring (min)

julia> Txy,(x,y) = T["x","y"]
(Multivariate Polynomial Ring in x, y over Tropical semiring (min), AbstractAlgebra.Generic.MPoly{Oscar.TropicalSemiringElem{typeof(min)}}[x, y])

julia> f = x+y+1
x + y + (1)

julia> Tf = TropicalHypersurface(f)
A min tropical hypersurface embedded in 2-dimensional Euclidean space
source
TropicalHypersurface(f::MPolyElem,M::Union{typeof(min),typeof(max)}=min)

Given a polynomial f over a field with an intrinsic valuation (i.e., a field on which a function valuation is defined such as PadicField(7,2)), return the tropical hypersurface of f under the convention specified by M.

Examples

julia> K = PadicField(7, 2);

julia> Kxy, (x,y) = K["x", "y"]
(Multivariate Polynomial Ring in x, y over Field of 7-adic numbers, AbstractAlgebra.Generic.MPoly{padic}[x, y])

julia> f = 7*x+y+49;

julia> TropicalHypersurface(f, min)
A min tropical hypersurface embedded in 2-dimensional Euclidean space

julia> TropicalHypersurface(f, max)
A max tropical hypersurface embedded in 2-dimensional Euclidean space
source
TropicalHypersurface(f::MPolyElem,M::Union{typeof(min),typeof(max)}=min)

Construct the tropical hypersurface from a polynomial f and a map to the tropical semiring val.

Examples

julia> Kx, (x1,x2) = PolynomialRing(QQ,2)
(Multivariate Polynomial Ring in x1, x2 over Rational Field, fmpq_mpoly[x1, x2])

julia> val = TropicalSemiringMap(QQ,7)
The 7-adic valuation on Rational Field

julia> f = 7*x1+x2+49;

julia> TropicalHypersurface(f, val)
A min tropical hypersurface embedded in 2-dimensional Euclidean space
source
dual_subdivisionMethod
dual_subdivision(TH::TropicalHypersurface{M, EMB})

Return the dual subdivision of TH if it is embedded. Otherwise an error is thrown.

Examples

A tropical hypersurface in $\mathbb{R}^n$ is always of dimension n-1.

julia> T = TropicalSemiring(min);

julia> Txy,(x,y) = T["x","y"];

julia> f = x+y+1;

julia> tropicalLine = TropicalHypersurface(f);

julia> dual_subdivision(tropicalLine)
A subdivision of points in ambient dimension 3
source

in work: minimal tropical polynomials of a hypersurface.

Tropical linear spaces

TropicalLinearSpaceType
TropicalLinearSpace(I::MPolyIdeal, val::TropicalSemiringMap)

Construct a tropical linear space from a degree 1 polynomial ideal I and a map to the tropical semiring val.

Examples

julia> R,(x1,x2,x3,x4,x5,x6) = PolynomialRing(ZZ,6)
(Multivariate Polynomial Ring in 6 variables x1, x2, x3, x4, ..., x6 over Integer Ring, fmpz_mpoly[x1, x2, x3, x4, x5, x6])

julia> I = ideal(R,[-x1+x3+x4,-x2+x3+x5,-x1+x2+x6])
ideal(-x1 + x3 + x4, -x2 + x3 + x5, -x1 + x2 + x6)

julia> val = TropicalSemiringMap(ZZ)
The trivial valuation on Integer Ring

julia> TropicalLinearSpace(I,val)
TropicalLinearSpace{min, true}(A polyhedral complex in ambient dimension 6, #undef)
source
TropicalLinearSpace(A::MatElem,val::TropicalSemiringMap)

Construct a tropical linear space from a matrix A and a map to the tropical semiring val.

Examples

julia> Kt, t = RationalFunctionField(QQ,"t");

julia> val = TropicalSemiringMap(Kt,t);

julia> A = matrix(Kt,[[t,4*t,0,2],[1,4,1,t^2]]);

julia> TropicalLinearSpace(A, val)
TropicalLinearSpace{min, true}(A polyhedral complex in ambient dimension 4, #undef)

julia> p = 3;

julia> val = TropicalSemiringMap(QQ, p);

julia> A = matrix(QQ, [[3,7,5,1], [9,7,1,2]])
[3   7   5   1]
[9   7   1   2]

julia> TropicalLinearSpace(A,val)
TropicalLinearSpace{min, true}(A polyhedral complex in ambient dimension 4, #undef)
source

Tropical varieties

(no functions yet, under active development)

in work: tropical_variety(I::MPolyIdeal,val::TropicalSemiringMap)

Groebner bases and Groebner polyhedra

groebner_basisMethod
groebner_basis(I::Ideal, val::TropicalSemiringMap, w::Vector; complete_reduction::Bool, return_lead::Bool)

Compute a Groebner basis of I over a field with valuation val with respect to weight vector w, that is a finite generating set of I whose initial forms generate the initial ideal with respect to w.

For the definitions of initial form, initial ideal and Groebner basis see Section 2.4 of Diane Maclagan, Bernd Sturmfels (2015).

Warning

Groebner bases over fields with valuation are still in an experimental stage. I must be generated by homogeneous polynomials and val must be non-trivial.

Examples

julia> R,(x,y) = PolynomialRing(QQ,["x","y"]);

julia> I = ideal([x^3-5*x^2*y,3*y^3-2*x^2*y])
ideal(x^3 - 5*x^2*y, -2*x^2*y + 3*y^3)

julia> val_2 = TropicalSemiringMap(QQ,2);

julia> w = [0,0];

julia> groebner_basis(I,val_2,w)
5-element Vector{fmpq_mpoly}:
 2*x^2*y - 3*y^3
 x^3 - 5*x^2*y
 x*y^3 - 5*y^4
 y^5
 x^2*y^3 + 69*y^5
source

in work: groebner_polyhedron(I::MPolyIdeal,val::TropicalSemiringMap,w::Vector{<: Union{Int,Rational{Int}})

Intersections and stable intersections

intersectMethod
intersect(T1, T2)

Intersect two tropical varieties.

Examples

julia> RR = TropicalSemiring(min)
Tropical semiring (min)

julia> S,(x,y) = RR["x","y"]
(Multivariate Polynomial Ring in x, y over Tropical semiring (min), AbstractAlgebra.Generic.MPoly{Oscar.TropicalSemiringElem{typeof(min)}}[x, y])

julia> f1 = x+y+1
x + y + (1)

julia> f2 = x^2+y^2+RR(-6)
x^2 + y^2 + (-6)

julia> hyp1 = TropicalHypersurface(f1)
A min tropical hypersurface embedded in 2-dimensional Euclidean space

julia> hyp2 = TropicalHypersurface(f2)
A min tropical hypersurface embedded in 2-dimensional Euclidean space

julia> tv12 = intersect(hyp1, hyp2)
A min tropical variety of dimension 1 embedded in 2-dimensional Euclidean space
source