cohomCalg:Implementation
, cohomCalg package, 2010, High-performance line bundle cohomology computation based on BJRR10.
AL94
William W. Adams, Philippe Loustaunau, An Introduction to Gröbner Bases, American Mathematical Society, 1994.
AHK18
Karim Adiprasito, June Huh, Eric Katz, Hodge theory for combinatorial geometries, Ann. of Math. (2), 188(2), 381–452, 2018.
BES19
Spencer Backman, Christopher Eur, Connor Simpson, Simplicial generation of Chow rings of matroids, 2019.
BN07
Matthew Baker, Serguei Norine, Riemann-Roch and Abel-Jacobi theory on a finite graph, Adv. Math., 215(2), 766–788, 2007.
BDEPS04
Neil Berry, Artūras Dubickas, Noam D. Elkies, Bjorn Poonen, Chris Smyth, The conjugate dimension of algebraic numbers, Q. J. Math., 55(3), 237–252, 2004.
BES-E-D21
Jérémy Berthomieu, Christian Eder, Mohab Safey El Din, Msolve: A Library for Solving Polynomial Systems, In Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation, ISSAC '21, 51-–58, New York, NY, USA, 2021. Association for Computing Machinery.
Bie18
Martin Bies, Cohomologies of coherent sheaves and massless spectra in F-theory, PhD thesis, Heidelberg U., 2018.
BJRR10
Ralph Blumenhagen, Benjamin Jurke, Thorsten Rahn, Helmut Roschy, Cohomology of line bundles: A computational algorithm, Journal of Mathematical Physics, 51(10), 103525, 2010.
BJRR12
Ralph Blumenhagen, Benjamin Jurke, Thorsten Rahn, Helmut Roschy, Cohomology of line bundles: Applications, Journal of Mathematical Physics, 53(1), 012302, 2012.
BHMPW20
Tom Braden, June Huh, Jacob P. Matherne, Nicholas Proudfoot, Botong Wang, A semi-small decomposition of the Chow ring of a matroid, 2020.
BH09
Winfried Bruns, Jürgen Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 2009.
BGV03
José Bueso, José Gómez-Torrecillas, Alain Verschoren, Algorithmic methods in non-commutative algebra. Applications to quantum groups., Dordrecht: Kluwer Academic Publishers, 2003.
Bhm99
Janko Böhm, Parametrisierung rationaler Kurven, Master's thesis, Universität Bayreuth, 1999.
BDLP17
Janko Böhm, Wolfram Decker, Santiago Laplagne, Gerhard Pfister, Local to global algorithms for the Gorenstein adjoint ideal of a curve, In Algorithmic and experimental methods in algebra, geometry, and number theory, editors, 51–96. Springer, Cham, 2017.
BDLP19
Janko Böhm, Wolfram Decker, Santiago Laplagne, Gerhard Pfister, Computing integral bases via localization and Hensel lifting, In MEGA 2019 - International Conference on Effective Methods in Algebraic Geometry, Madrid, Spain, 2019.
BDLPSS13
Janko Böhm, Wolfram Decker, Santiago Laplagne, Gerhard Pfister, Andreas Steenpaß, Stefan Steidel, Parallel algorithms for normalization, Journal of Symbolic Computation, 51, 99-114, 2013.
BKR20
Janko Böhm, Simon Keicher, Yue Ren, Computing GIT-fans with symmetry and the Mori chamber decomposition of {$\overlineM_{0,6}$}, Math. Comp., 89(326), 3003–3021, 2020.
Cam99
Peter J. Cameron, Permutation groups, Cambridge University Press, Cambridge, 1999.
OMdCS00
Ignacio Ojeda Martínez de Castilla, Ramón Peidra Sánchez, Cellular binomial ideals. Primary decomposition of binomial ideals, J. Symbolic Comput., 30(4), 383–400, 2000.
Chr91
Jan Arthur Christophersen, On the components and discriminant of the versal base space of cyclic quotient singularities, In Singularity theory and its applications, Part I (Coventry, 1988/1989), editors, 81–92. Springer, Berlin, 1991.
C-MLS20
Jose Luis Cisneros Molina, Dung Trang Le, Jose Seade, Handbook of Geometry and Topology of Singularities I, Springer-Verlag, Cham, 2020.
C-MLS21
Jose Luis Cisneros Molina, Dung Trang Le, Jose Seade, Handbook of Geometry and Topology of Singularities II, Springer-Verlag, Cham, 2021.
Coh93
Henri Cohen, A course in computational algebraic number theory, Springer-Verlag, Berlin, 1993.
Coh00
Henri Cohen, Advanced topics in computational number theory, Springer-Verlag, New York, 2000.
CCNPW85
J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Oxford University Press, Eynsham, 1985.
CS99
J. H. Conway, N. J. A. Sloane, Sphere packings, lattices and groups, Springer-Verlag, New York, 1999.
CHM98
John H. Conway, Alexander Hulpke, John McKay, On transitive permutation groups, LMS J. Comput. Math., 1, 1–8, 1998.
CLS11
David A. Cox, John B. Little, Henry K. Schenck, Toric varieties, Providence, RI: American Mathematical Society (AMS), 2011.
DF20
DLRS10
Jesús A. De Loera, Jörg Rambau, Francisco Santos, Triangulations. Structures for algorithms and applications, Springer-Verlag, Berlin, 2010.
DGP99
Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, Primary decomposition: algorithms and comparisons, In Algorithmic algebra and number theory. Selected papers from a conference, Heidelberg, Germany, October 1997, editors, 187–220. Springer, Berlin, 1999.
DHS98
Wolfram Decker, Agnes Eileen Heydtmann, Frank-Olaf Schreyer, Generating a Noetherian normalization of the invariant ring of a finite group, J. Symbolic Comput., 25(6), 727–731, 1998.
DJ98
Wolfram Decker, Theo de Jong, Gröbner bases and invariant theory, In Gröbner bases and applications. Based on a course for young researchers, January 1998, and the conference "33 years of Gröbner bases", Linz, Austria, February 2–4, 1998, editors, 61–89. Cambridge Univ. Press, Cambridge, 1998.
DL06
Wolfram Decker, Christoph Lossen, Computing in algebraic geometry. A quick start using SINGULAR, Springer-Verlag, Berlin; Hindustan Book Agency, New Delhi, 2006.
DP13
Wolfram Decker, Gerhard Pfister, A first course in computational algebraic geometry, Cambridge University Press, Cambridge, 2013.
Der99
Harm Derksen, Computation of invariants for reductive groups, Adv. Math., 141(2), 366–384, 1999.
DK15
DFO13
A. S. Detinko, D. L. Flannery, E. A. O'Brien, Recognizing finite matrix groups over infinite fields, J. Symbolic Comput., 50, 100–109, 2013.
DH00
Mátyás Domokos, Pál Hegedűs, Noether's bound for polynomial invariants of finite groups, Arch. Math. (Basel), 74(3), 161–167, 2000.
EHV92
David Eisenbud, Craig Huneke, Wolmer Vasconcelos, Direct methods for primary decomposition, Invent. Math., 110(2), 207–235, 1992.
ES96
David Eisenbud, Bernd Sturmfels, Binomial ideals, Duke Math. J., 84(1), 1–45, 1996.
EM16
Zekiye Sahin Eser, Laura Felicia Matusevich, Decompositions of cellular binomial ideals, J. Lond. Math. Soc. (2), 94(2), 409–426, 2016.
EM19
Zekiye Sahin Eser, Laura Felicia Matusevich, Corrigendum: Decompositions of cellular binomial ideals: (J. Lond. Math. Soc. 94 (2016) 409–426), J. Lond. Math. Soc. (2), 100(2), 717–719, 2019.
FJR17
Huijun Fan, Tyler Jarvis, Yongbin Ruan, A mathematical theory of the gauged linear sigma model, Geometry & Topology, 22(1), 235–303, 2017.
Fau99
Jean-Charles Faugère, A new efficient algorithm for computing Gröbner bases (F4), Journal of Pure and Applied Algebra, 139(1–3), 61–88, 1999.
FY04
Eva Maria Feichtner, Sergey Yuzvinsky, Chow rings of toric varieties defined by atomic lattices, Inventiones Mathematicae, 155(3), 515–536, 2004.
Ful69
William Fulton, Algebraic curves. An introduction to algebraic geometry, W. A. Benjamin, Inc., New York-Amsterdam, 1969.
Gat18
GHJ16
Ewgenij Gawrilow, Simon Hampe, Michael Joswig, The polymake XML File Format, In Mathematical Software – ICMS 2016, 403–410, Cham, 2016. Springer International Publishing.
GJ00
Ewgenij Gawrilow, Michael Joswig, polymake: a Framework for Analyzing Convex Polytopes, In Polytopes — Combinatorics and Computation, editors, Gil Kalai, Günter M. Ziegler, 43–74. Birkhäuser, 2000.
GTZ88
Patrizia Gianni, Barry Trager, Gail Zacharias, Gröbner bases and primary decomposition of polynomial ideals, In Computational aspects of commutative algebra, editors, 149–167. Elsevier Ltd, Oxford, 1988.
GLS07
G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations, Springer-Verlag, Berlin, 2007.
GLS10
Gert-Martin Greuel, Santiago Laplagne, Frank Seelisch, Normalization of rings, J. Symbolic Comput., 45(9), 887–901, 2010.
GP08
Har77
Robin Hartshorne, Algebraic Geometry, Springer-Verlag, New York, 1977.
HEO05
Derek F. Holt, Bettina Eick, Eamonn A. O'Brien, Handbook of computational group theory, Chapman & Hall/CRC, Boca Raton, FL, 2005.
HP89
Derek F. Holt, W. Plesken, Perfect groups, The Clarendon Press, Oxford University Press, New York, 1989.
Hup67
B. Huppert, Endliche Gruppen. I, Springer-Verlag, Berlin-New York, 1967.
JLPW95
C. Jansen, K. Lux, R. Parker, R. Wilson, An atlas of Brauer characters, The Clarendon Press Oxford University Press, New York, 1995.
JP00
Theo de Jong, Gerhard Pfister, Local Analytic Geometry, Vieweg+Teubner Verlag, 2000.
Jos21
Michael Joswig, Essentials of tropical combinatorics, American Mathematical Society, Providence, RI, 2021.
JT13
Michael Joswig, Thorsten Theobald, Polyhedral and algebraic methods in computational geometry, Springer, London, 2013.
Jow11
Shin-Yao Jow, Cohomology of toric line bundles via simplicial Alexander duality, Journal of Mathematical Physics, 52(3), 033506, 2011.
Kah10
Thomas Kahle, Decompositions of binomial ideals, Ann. Inst. Statist. Math., 62(4), 727–745, 2010.
KLT20
Marek Kaluba, Benjamin Lorenz, Sascha Timme, Polymake.jl: A New Interface to polymake, In Mathematical Software – ICMS 2020, 377–385, Cham, 2020. Springer International Publishing.
Kem99
Gregor Kemper, An algorithm to calculate optimal homogeneous systems of parameters, J. Symbolic Comput., 27(2), 171–184, 1999.
Kem02
Gregor Kemper, The calculation of radical ideals in positive characteristic, J. Symbolic Comput., 34(3), 229–238, 2002.
KS99
Gregor Kemper, Allan Steel, Some algorithms in invariant theory of finite groups, In Computational methods for representations of groups and algebras (Essen, 1997), editors, 267–285. Birkhäuser, Basel, 1999.
Kin07
Simon King, Fast computation of secondary invariants, arXiv:math/0701270, 2007.
Kin13
Simon King, Minimal generating sets of non-modular invariant rings of finite groups, J. Symb. Comput., 48, 101–109, 2013.
Knu11
Donald E. Knuth, The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1, Addison-Wesley, Upper Saddle River, NJ, 2011.
Koz08
Dmitry Kozlov, Combinatorial algebraic topology, Springer, Berlin, 2008.
KR05
Martin Kreuzer, Lorenzo Robbiano, Computational commutative algebra. II, Berlin: Springer, 2005.
KL91
Teresa Krick, Alessandro Logar, An algorithm for the computation of the radical of an ideal in the ring of polynomials, In Applied algebra, algebraic algorithms and error-correcting codes (New Orleans, LA, 1991), editors, 195–205. Springer, Berlin, 1991.
Lev05
Viktor Levandovskyy, Non-commutative Computer Algebra for polynomial algebras: Gr{\"o}bner bases, applications and implementation, PhD thesis, Technische Universit{\"a}t Kaiserslautern, 2005.
LS03
Viktor Levandovskyy, Hans Schönemann, Plural – a computer algebra system for noncommutative polynomial algebras, In Proceedings of the 2003 international symposium on symbolic and algebraic computation, ISSAC 2003, Philadelphia, PA, USA, August 3–6, 2003., editors, 176–183. New York, NY: ACM Press, 2003.
LN97
Rudolf Lidl, Harald Niederreiter, Finite fields, Cambridge University Press, Cambridge, 1997.
Loo84
Eduard Looijenga, Isolated Singular Points on Complete Intersections, Cambridge University Press, Cambridge, 1984.
Mar18
Daniel A. Marcus, Number fields, Springer, Cham, 2018.
MS05
Ezra Miller, Bernd Sturmfels, Combinatorial commutative algebra, New York, NY: Springer, 2005.
Nik79
V. V. Nikulin, Integer symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., 43(1), 111–177, 238, 1979.
Oxl11
James Oxley, Matroid theory, Oxford University Press, Oxford, 2011.
Peg14
Christoph Pegel, Chow Rings of Toric Varieties, Master's thesis, University of Bremen, Faculty of Mathematics, 2014.
PSS11
Gerhard Pfister, Afshan Sadiq, Stefan Steidel, An algorithm for primary decomposition in polynomial rings over the integers, Cent. Eur. J. Math., 9(4), 897–904, 2011.
PZ97
M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, Cambridge University Press, Cambridge, 1997.
Pos18
Sebastian Posur, Linear systems over localizations of rings, Archiv der Mathematik, 111, 23–32, 2018.
RR10
Helmut Roschy, Thorsten Rahn, Cohomology of line bundles: Proof of the algorithm, Journal of Mathematical Physics, 51(10), 103520, 2010.
Sez02
Shi18
Ichiro Shimada, {Connected Components of the Moduli of Elliptic $K3$ Surfaces}, Michigan Mathematical Journal, 67(3), 511 – 559, 2018.
SY96
Takeshi Shimoyama, Kazuhiro Yokoyama, Localization and primary decomposition of polynomial ideals, J. Symbolic Comput., 22(3), 247–277, 1996.
Ste91
Jan Stevens, On the versal deformation of cyclic quotient singularities, In Singularity theory and its applications, Part I (Coventry, 1988/1989), editors, 302–319. Springer, Berlin, 1991.
Stu93
Bernd Sturmfels, Algorithms in invariant theory, Springer-Verlag, Vienna, 1993.
Sym11
Peter Symonds, On the Castelnuovo-Mumford regularity of rings of polynomial invariants, Ann. of Math. (2), 174(1), 499–517, 2011.
Tay87
D. E. Taylor, Pairs of Generators for Matrix Groups. I, The Cayley Bulletin, 3, 76–85, 1987.
Was08
Lawrence C. Washington, Elliptic curves, Chapman & Hall/CRC, Boca Raton, FL, 2008.
Wil13
James B. Wilson, Optimal algorithms of Gram-Schmidt type, Linear Algebra Appl., 438(12), 4573–4583, 2013.
WWTSPNNLBA
R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, R. A. Parker, S. P. Norton, S. Nickerson, S. Linton, J. Bray, R. Abbott, ATLAS of Finite Group Representations,
Wit88
Edward Witten, Topological Sigma Models, Commun. Math. Phys., 118, 411, 1988.
Zie95
Günter M. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995.
Eis95
David Eisenbud, {Commutative algebra. With a view toward algebraic geometry}, Berlin: Springer-Verlag, 1995.
MS15
Diane Maclagan, Bernd Sturmfels, {Introduction to tropical geometry}, Providence, RI: American Mathematical Society (AMS), 2015.