Curves

Introduction

An abstract tropical curve is a finite, loopless, mulitgraph. It is defined by an incidence matrix with vertices as columns and edges as rows.

A divisor on an abstract tropical curve is a formal linear combination of the vertices with integer coefficients. The degree of a divisor is the sum of its coefficients. A divisor is effective if all its coefficients are nonnegative.

For more definitions on the theory of divisors and linear sisyems on abstract tropical curve, we refer to Matthew Baker, Serguei Norine (2007).

The tropical Jacobian of an abstract tropical curve is the group of divisors of degree zero modulo the subgroup of principal divisors. Here a principal divisor is the divisor associated to a piecewise-linear function on the vertices by the Laplacian operator. The tropical Jacobian is a finite abelian group, with order equal to the number of maximal spanning trees in the graph. It is isomorphic to $\prod{\mathbb{Z}/n_{i}\mathbb{Z}}$, where the $n_{i}$ are the nonzero elementary divisors of the Laplacian matrix. For more details, see Matthew Baker, Serguei Norine (2007).

Construction

TropicalCurveMethod
TropicalCurve(PC::PolyhedralComplex)

Construct a tropical curve from a polyhedral complex. If the curve is embedded, vertices must are points in $\mathbb R^n$. If the curve is abstract, the polyhedral complex is empty, vertices must be 1, ..., n, and the graph is given as attribute.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4]])
3×4 IncidenceMatrix
[1, 2]
[1, 3]
[1, 4]


julia> VR = [0 0; 1 0; -1 0; 0 1]
4×2 Matrix{Int64}:
  0  0
  1  0
 -1  0
  0  1

julia> PC = PolyhedralComplex{fmpq}(IM, VR)
A polyhedral complex in ambient dimension 2

julia> TC = TropicalCurve(PC)
A min tropical curve in 2-dimensional Euclidean space

julia> abs_TC = TropicalCurve(IM)
An abstract min tropical curve
source
DivisorOnTropicalCurveMethod
DivisorOnTropicalCurve(tc::TropicalCurve, coeffs::Vector{Int})

Construct a divisor with coefficients coeffs on an abstract tropical curve tc.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])
source

Auxiliary functions

graphMethod
graph(tc::TropicalCurve)

Return the graph of an abstract tropical curve tc.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> graph(tc)
6×4 IncidenceMatrix
[1, 2]
[1, 3]
[1, 4]
[2, 3]
[2, 4]
[3, 4]
source
n_nodesMethod
n_nodes(tc::TropicalCurve)

Return the number of nodes of an abstract tropical curve tc.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> n_nodes(tc)
4
source
coefficientsMethod
coefficients(dtc::DivisorOnTropicalCurve)

Construct a divisor dtc with coefficients coeffs on an abstract tropical curve.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> coefficients(dtc)
4-element Vector{Int64}:
 0
 1
 1
 1
source
degreeMethod

degree(dtc::DivisorOnTropicalCurve)

Compute the degree of a divisor dtc on an abstract tropical curve.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> degree(dtc)
3
source
is_effectiveMethod
is_effective(dtc::DivisorOnTropicalCurve)

Check whether a divisor dtc on an abstract tropical curve is effective.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> is_effective(dtc)
true
source
chip_firing_moveMethod

chipfiringmove(dtc::DivisorOnTropicalCurve, position::Int)

Given a divisor dtc and vertex labelled position, compute the linearly equivalent divisor obtained by a chip firing move from the given vertex position.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> chip_firing_move(dtc,1)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [-3, 2, 2, 2])
source
v_reducedMethod

v_reduced(dtc::DivisorOnTropicalCurve, vertex::Int)

Given a divisor dtc and vertex labelled vertex, compute the unique divisor reduced with repspect to vertex as defined in Matthew Baker, Serguei Norine (2007). The divisor dtc must have positive coefficients apart from vertex.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs = [0, 1, 1, 1];

julia> dtc = DivisorOnTropicalCurve(tc,coeffs)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> v_reduced(dtc,1)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [3, 0, 0, 0])
source
is_linearly_equivalentMethod

islinearlyequivalent(dtc1::DivisorOnTropicalCurve, dtc2::DivisorOnTropicalCurve)

Given two effective divisors dtc1 and dtc2 on the same tropical curve, check whether they are linearly equivalent.

Examples

julia> IM = IncidenceMatrix([[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]);

julia> tc = TropicalCurve(IM)
An abstract min tropical curve

julia> coeffs1 = [0, 1, 1, 1];

julia> dtc1 = DivisorOnTropicalCurve(tc,coeffs1)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [0, 1, 1, 1])

julia> coeffs2 = [3,0,0,0];

julia> dtc2 = DivisorOnTropicalCurve(tc,coeffs2)
DivisorOnTropicalCurve{min, false}(An abstract min tropical curve, [3, 0, 0, 0])

julia> is_linearly_equivalent(dtc1, dtc2)
true
source
structure_tropical_jacobianMethod
structure_tropical_jacobian(TC::TropicalCurve)

Compute the elementary divisors $n_i$ of the Laplacian matrix of the tropical curve TC. The tropical Jacobian is then isomorphic to $\prod (Z/(n_i)Z)$.

Examples

julia> cg = complete_graph(5);

julia> IM1=IncidenceMatrix([[src(e), dst(e)] for e in edges(cg)])
10×5 IncidenceMatrix
[1, 2]
[1, 3]
[2, 3]
[1, 4]
[2, 4]
[3, 4]
[1, 5]
[2, 5]
[3, 5]
[4, 5]

julia> TC1 = TropicalCurve(IM1)
An abstract min tropical curve

julia> structure_tropical_jacobian(TC1)
(General) abelian group with relation matrix
[1 0 0 0; 0 5 0 0; 0 0 5 0; 0 0 0 5]

julia> cg2 = complete_graph(3);

julia> IM2=IncidenceMatrix([[src(e), dst(e)] for e in edges(cg2)])
3×3 IncidenceMatrix
[1, 2]
[1, 3]
[2, 3]

julia> TC2 = TropicalCurve(IM2)
An abstract min tropical curve

julia> structure_tropical_jacobian(TC2)
(General) abelian group with relation matrix
[1 0; 0 3]

julia> IM3 = IncidenceMatrix([[1,2],[2,3],[3,4],[4,5],[1,5]])
5×5 IncidenceMatrix
[1, 2]
[2, 3]
[3, 4]
[4, 5]
[1, 5]

julia> TC3=TropicalCurve(IM3)
An abstract min tropical curve

julia> G = structure_tropical_jacobian(TC3)
(General) abelian group with relation matrix
[1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 5]
source